利用神经网络内部表征可视化class-specific image regions区域

本篇博客是对MIT周博磊论文《earning Deep Features for Discriminative Localization.》的学习笔记。 具体论文《Learning Deep Features for Discriminative Localization.》 要想更多的了解周博磊...

2017-11-24 17:46:01

阅读数 1912

评论数 0

从loss处理图像分割中类别极度不均衡的状况---keras

最近在做小目标图像分割任务(医疗方向),往往一幅图像中只有一个或者两个目标,而且目标的像素比例比较小,选择合适的loss function往往可以解决这个问题。以下是我的实验比较。 场景: 1.U-Net网络 2. keras binary_crossentropy 二分类交叉商...

2019-02-10 23:21:35

阅读数 1619

评论数 0

NASNET-【论文理解】

前言 谷歌大脑Google Brain的一篇论文,提出了目前最好的图像分类的网络架构。之前的研究表明,网络结构的设计无非是一些卷积核、非线性变换、层之间的连接等之间的组合。 那么当然就可以使用RNN来预测卷积单元 convolutional cell,单元中的网络元素的组合不再受人控制,再将卷积...

2019-02-03 12:59:47

阅读数 44

评论数 0

Residual Attention Network--2017-【论文理解】

前言 整体把这篇论文过了两遍之后,便觉得写的有点啰嗦。人类目前发明的所有代替人类工作的工具在最开始都是借鉴了人的行为,即发明是以人的行为为导向。对于今天讨论的注意力图像分类网络也是如此,但是是否真正达到了所谓的attention其实还需要进一步的考量(个人觉得)。对于人类而言,判断一副图像是否是...

2019-01-28 14:19:52

阅读数 46

评论数 0

3D Segmentation with Exponential LogarithmicLoss for Highly Unbalanced Object Sizes-MICCAI2018【论文理解】

MICCAI 2018的论文 前言 深度学习的迅速发展,使得在医疗影像分割上也有很多深度学习模型。但是论文提出,大部分的网络只能处理数量较少的类别(<10),并且在3D影像分割中,很难处理小目标,解决数据极度不均衡的问题。本论文提出了新的3D网络网络结构和新的los...

2018-12-29 10:42:16

阅读数 130

评论数 0

Spatial-Channel Sequeeze & Excitation (SCSE)-8-June-2018【论文理解】

文章目录前言SE(cSE)sCEscCE模型复杂度分析分割结果展示参考 前言 在分割领域,目前的网络改进方式一般是改进encoding层,或者是改进跨层连接的方式;但是此篇论文受到SE(squeeze&excitation)模块的提示,提出了另外三种模式s...

2018-12-24 17:48:43

阅读数 60

评论数 0

keras多任务多loss回传的思考

如果有一个多任务多loss的网络,那么在训练时,loss是如何工作的呢? 比如下面: model = Model(inputs = input, outputs = [y1, y2]) l1 = 0.5 l2 = 0.3 model.compile(loss = [loss1, loss2], l...

2018-12-21 15:48:52

阅读数 73

评论数 0

Aggregated Residual Transformations for DeepNeural Networks -ResNetXt2017【论文理解】

前言 这是残差家族的新的成员,在残差网络结构的设计中加入了“基数Cardinality”的概念,本质上就是分组卷积group convolution的运用,分组卷积最早的提出是在AlexNet中,是为了解决显存不够大的问题而提出的。具有相同网络拓扑结构的模块堆叠而成,在ImageNet分类中性能...

2018-11-29 14:55:32

阅读数 55

评论数 0

Identity Mappings in Deep Residual Networks2016【论文理解】

文章目录前言原始的残差模块改进的残差模块模块分析结果图参考 前言 此论文是对Deep residual networks [1]残差网络模块结构的改进和实验,提出了残差模块第二版,此新的模块形式不管是在前向传播或者是反向传播都有很好的优势,并且在网络训练上更加的容易,收敛更快,精度更高,泛化性更低...

2018-11-28 16:48:51

阅读数 49

评论数 0

信息检索评价标准计算

原版PDF此处下载:http://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-1-per.pdf 相关的评价标准 NDGG也是用来衡量排序质量的指标 精度计算 平均检索精度 简单而言就是多次检索之后结果的平均。 ...

2018-11-21 16:22:15

阅读数 38

评论数 0

Xception: DeepLearning with Depthwise Separable Convolutions2017Google【论文理解】

暂定----

2018-11-19 11:29:12

阅读数 36

评论数 0

Context Encoding for Semantic Segmentation-CVPR2018【论文理解】

论文地址: http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Context_Encoding_for_CVPR_2018_paper.pdf 代码及作者信息:https://hangzhang.org/ 先说一句,写论文的...

2018-11-16 17:04:27

阅读数 29

评论数 0

UNet以ResNet34为backbone in keras

参考:https://www.kaggle.com/meaninglesslives/unet-resnet34-in-keras

2018-11-08 17:51:22

阅读数 560

评论数 0

keras 多GPU训练,单GPU权重保存和预测

多GPU训练 keras自带模块 multi_gpu_model,此方式为数据并行的方式,将将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据,最高支持在8片GPU上并行。 使用方式: from keras.utils import multi_gpu_mode...

2018-10-25 13:53:54

阅读数 571

评论数 0

[tensorflow and keras] 自定义带权重的logloss

带权重的logloss — tensorflow def weighted_loss(labels, logits): ''' Weighted loss. Args: labels: without onehot logits: after sorfmax...

2018-10-22 20:00:36

阅读数 233

评论数 0

直方图均衡图像对比度(histogram equalization)PYTHON+OPENCV2

直方图均衡化是一种图像处理方法,用来提高图像的对比度,本博客涉及到直方图的应用PYTHON+OPENCV2 如果一个图像的像素取值范围在很狭窄的一个区域内,那么图像的细节就不是那么的明显,如果可以将图像的像素分布范围均衡化,那么能够提高图像的对比度,如下图所示: 使用python+openc...

2018-10-17 13:41:44

阅读数 214

评论数 0

Pyinstaller将外部数据文件打包到可执行文件中(onefolder or onefile)教程

前言 有时候我们想要发布写好的代码,使用Pyinstaller进行打包,但是我们程序有很多需要读取的外部数据,比如深度神经网络读取网络参数做预测。因为Pyinstaller打包有两种形式onefile或者onefolder。下面分别介绍。 环境: ubuntu 16.04 pyinst...

2018-08-28 14:43:46

阅读数 649

评论数 0

'scipy._lib.messagestream' 以及 'scipy.interpolate.interpnd.array' 解决办法

环境: ubuntu 16.04 tensorflow == 1.9.0 scipy == 1.1.0 python == 3.5.2 pyinstaller == 3.3.1 最近使用pyinstaller打包tensorflow训练好的预测模块,编译...

2018-08-23 16:26:51

阅读数 334

评论数 0

slim.conv2d以及slim.convolution2d与tf.nn.conv2d的不同

前言 Slim是一个简化构建,训练和评估神经网络的库: 允许用户通过消除样板代码来更紧凑地定义模型。 这是通过使用参数范围和许多高级层和变量来实现的。 这些工具提高了可读性和可维护性,降低了复制和粘贴超参数值的错误发生的可能性,并简化了超参数调整。 通过提供常用的正则化器使开发模型变得简单...

2018-08-13 15:46:25

阅读数 933

评论数 0

在Ubuntu 16.04 使用命令行安装Nvidia CUDA-9.0以及cudnn7

本资料在ubuntu16.04上安装cuda-9.0,使用命令行,无需上nvidia官网下载包。 OS: Ubuntu 16.04 x86_64 (可选择项) 卸载旧版CUDA,类似于以下操作: sudo apt-get purge cuda sudo apt-get purge libc...

2018-08-01 10:49:33

阅读数 1065

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭