排序:
默认
按更新时间
按访问量

利用神经网络内部表征可视化class-specific image regions区域

本篇博客是对MIT周博磊论文《earning Deep Features for Discriminative Localization.》的学习笔记。 具体论文《Learning Deep Features for Discriminative Localization.》 要想更多的了解周博磊...

2017-11-24 17:46:01

阅读数:1389

评论数:0

[tensorflow and keras] 带权重的logloss

带权重的logloss — tensorflow def weighted_loss(labels, logits): ''' Weighted loss. Args: labels: without onehot logits: after sorfmax...

2018-10-22 20:00:36

阅读数:5

评论数:0

直方图均衡图像对比度(histogram equalization)PYTHON+OPENCV2

直方图均衡化是一种图像处理方法,用来提高图像的对比度,本博客涉及到直方图的应用PYTHON+OPENCV2 如果一个图像的像素取值范围在很狭窄的一个区域内,那么图像的细节就不是那么的明显,如果可以将图像的像素分布范围均衡化,那么能够提高图像的对比度,如下图所示: 使用python+openc...

2018-10-17 13:41:44

阅读数:11

评论数:0

图像分割—小目标识别-loss function选择-u-net-keras

最近在做小目标图像分割任务(医疗方向),往往一幅图像中只有一个或者两个目标,而且目标的像素比例比较小,选择合适的loss function往往可以解决这个问题。以下是我的实验比较。 场景: 1.U-Net网络 2. keras binary_crossentropy 二分类交叉商损失会导致模型...

2018-10-10 23:07:26

阅读数:98

评论数:0

Pyinstaller将外部数据文件打包到可执行文件中(onefolder or onefile)教程

前言 有时候我们想要发布写好的代码,使用Pyinstaller进行打包,但是我们程序有很多需要读取的外部数据,比如深度神经网络读取网络参数做预测。因为Pyinstaller打包有两种形式onefile或者onefolder。下面分别介绍。 环境: ubuntu 16.04 pyinst...

2018-08-28 14:43:46

阅读数:114

评论数:0

'scipy._lib.messagestream' 以及 'scipy.interpolate.interpnd.array' 解决办法

环境: ubuntu 16.04 tensorflow == 1.9.0 scipy == 1.1.0 python == 3.5.2 pyinstaller == 3.3.1 最近使用pyinstaller打包tensorflow训练好的预测模块,编译...

2018-08-23 16:26:51

阅读数:104

评论数:0

slim.conv2d以及slim.convolution2d与tf.nn.conv2d的不同

前言 Slim是一个简化构建,训练和评估神经网络的库: 允许用户通过消除样板代码来更紧凑地定义模型。 这是通过使用参数范围和许多高级层和变量来实现的。 这些工具提高了可读性和可维护性,降低了复制和粘贴超参数值的错误发生的可能性,并简化了超参数调整。 通过提供常用的正则化器使开发模型变得简单...

2018-08-13 15:46:25

阅读数:205

评论数:0

在Ubuntu 16.04 使用命令行安装Nvidia CUDA-9.0以及cudnn7

本资料在ubuntu16.04上安装cuda-9.0,使用命令行,无需上nvidia官网下载包。 OS: Ubuntu 16.04 x86_64 (可选择项) 卸载旧版CUDA,类似于以下操作: sudo apt-get purge cuda sudo apt-get purge libc...

2018-08-01 10:49:33

阅读数:300

评论数:0

tf-openpose人体姿态估计标签生成--heatmap--vectormap

项目地址:https://github.com/ildoonet/tf-pose-estimation 人体姿态估计部分代码解读 openpose是自下而上的人体姿态估计方法,此处我们讨论的是tensorflow的版本。 coco keypoints 标注 以及tf-openpo...

2018-07-27 15:14:10

阅读数:369

评论数:0

tensorflow对已经训练的模型进行优化和固化

前言 有时,我们需要保存tensorflow训练的模型: tf.train.write_graph()默认情况下只导出了网络的定义(没有权重) 利用tf.train.Saver().save()导出的文件graph_def与权重是分离的 为了方便使用模型,通过tensorflow.pyth...

2018-07-24 17:07:33

阅读数:277

评论数:0

CPN(Cascaded Pyramid Network for Multi-Person Pose Estimation) 姿态估计

本篇博客是对论文《Cascaded Pyramid Network for Multi-Person Pose Estimation》的个人解读,以及对代码(tensorflow版本)的细节分析。 前言 目前对多人的姿态点检测的算法总体分为两类: bottom-up 方法:此方法直接预...

2018-07-11 16:34:47

阅读数:148

评论数:2

开源|如何用Soft-NMS实现目标检测并提升准确率

用一行代码提升目标检测准确率 论文摘要 非最大抑制(Non-maximum suppression, NMS)是物体检测流程中重要的组成部分。它首先基于物体检测分数产生检测框,分数最高的检测框M被选中,其他与被选中检测框有明显重叠的检测框被抑制。该过程被不断递归的应用于其余检测框。根据算法...

2018-07-04 10:11:00

阅读数:79

评论数:0

【机器学习笔记】使用lightgbm画并保存Feature Importance

资料参考: 1. Evaluate Feature Importance using Tree-based Model 2. lgbm.fi.plot: LightGBM Feature Importance Plotting 3. lightgbm官方文档 前言 基于树的模型可以...

2018-06-04 14:38:30

阅读数:2077

评论数:3

【数据结构笔记】Leetcode:718. 最长重复子数组(动态规划)

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。 示例 1: 输入: A: [1,2,3,2,1] B: [3,2,1,4,7] 输出: 3 解释: 长度最长的公共子数组是 [3, 2, 1]。 说明: 1 <...

2018-05-10 20:32:33

阅读数:488

评论数:0

【数据结构笔记】Leetcode买卖股票的最佳时机 系列总结

买卖股票的最佳时机 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。 注意你不能在买入股票前卖出股票。 示例 1: 输入: [7,1,5,3,6,4] 输出: 5 解释...

2018-05-09 22:50:16

阅读数:482

评论数:0

【深度学习笔记】Batch Normalization 以及其如何解决梯度消失问题

本篇文章为转载,转载地址:https://blog.csdn.net/malefactor/article/details/51476961,作者:张俊林 前言 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。目前几乎已经成为DL...

2018-05-09 21:48:59

阅读数:555

评论数:0

阿里算法工程师模拟题2018/5/7

编程题: 某商家开展用福卡兑换现金券的促销活动。该商家规定,和谐福、爱国福、敬业福、友善福及富强福的积分 分别是F1、F2、F3、F4和F5,顾客收集齐N积分的福卡,即可获得现金券一张。假设,福卡只能通过 扫描“福”字获得,每次扫描“福”字最多获得一张福卡,需指定该次扫描获得的福卡类型,获得...

2018-05-07 20:11:26

阅读数:193

评论数:0

【数据结构笔记】二叉搜索树及其相关算法

简介 二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树...

2018-05-07 17:51:54

阅读数:79

评论数:0

【Leetcode】打家劫舍 I and 打家劫舍 II(动态规划)PYTHON

198.打家劫舍 题目表述: 你是一个专业的强盗,计划抢劫沿街的房屋。每间房都藏有一定的现金,阻止你抢劫他们的唯一的制约因素就是相邻的房屋有保安系统连接,如果两间相邻的房屋在同一晚上被闯入,它会自动联系警方。 给定一个代表每个房屋的金额的非负整数列表,确定你可以在没有提醒警方的情况下抢劫的最...

2018-04-22 14:03:23

阅读数:649

评论数:0

【機器學習筆記】xgboost中的min_child_weight參數理解。

對於xgboost,min_child_weight是一個非常重要的參數,官方文檔描述如下: minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in ...

2018-04-18 15:31:02

阅读数:1251

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭