c语言求素数500-1999,初等数论练习题

初等数论练习题

信阳职业技术学院

2010年12月

一、填空题

1、d(2420)=___________; ϕ(2420)=___________。 2、设a,n 是大于1的整数,若a n -1是质数,则a=___________。 3、模9的绝对最小完全剩余系是___________。 4、同余方程9x+12≡0(mod 37)的解是__________。 5、不定方程18x-23y=100的通解是___________。 6、分母是正整数m 的既约真分数的个数为_______。 7、18100被172除的余数是___________。 8、

⎛65⎫

⎪ =___________。 ⎝103⎭

9、若p 是素数,则同余方程x p -1≡1(mod p ) 的解数为 二、计算题

1、解同余方程:3x 2+11x -20≡0 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 3、求(127156+34)28除以111的最小非负余数。 三、证明题

1、已知p 是质数,(a,p )=1,证明:

(1)当a 为奇数时,a p-1+(p-1)≡0 (mod p); (2)当a 为偶数时,a p-1-(p-1)≡0 (mod p)。

2、设a 为正奇数,n 为正整数,试证a

3、设p 是一个素数,且1≢k ≢p-1。证明:C k p -1 ≡ (-1 )(mod p ) 。

k

a

a

2n

≡1(mod 2n+2) 。

4、设p 是不等于3和7的奇质数,证明:p 6≡1(mod 84)。

一、填空题

1、d(1000)=__________;σ(1000)=__________。 2、2010! 的标准分解式中,质数11的次数是__________。

3、费尔马(Fermat)数是指Fn=22+1,这种数中最小的合数Fn 中的n=_________。 4、同余方程13x ≡5(mod 31)的解是__________。 5、分母不大于m 的既约真分数的个数为_________。 6、设7∣(80n -1), 则最小的正整数n=__________。

7、使41x+15y=C无非负整数解的最大正整数C=__________。 8、⎛

46⎫

⎪=__________。 ⎝101⎭

n

9、若p 是质数,n ∣p - 1,则同余方程x n ≡ 1 (mod p ) 的解数为 。 二、计算题

2003

1、试求2002

2004

被19除所得的余数。

2、解同余方程3x 14+4x 10+6x -18≡0 (mod 5)。

3、已知a=5,m=21,求使a x ≡ 1 (mod m)成立的最小自然数x 。 三、证明题

1、试证13|(54m +46n +2000)。(提示:可取模13进行计算性证明) 。

2、证明Wilson 定理的逆定理:若n > 1,并且(n - 1)! ≡ -1 (mod n ) ,则n 是素数。

3、证明:设p s 表示全部由1组成的s 位十进制数,若p s 是素数,则s 也是一个素数。

4、证明:若2p + 1是奇素数,则 (p !) 2 + (-1) p ≡ 0 (mod 2p + 1)。

5、设p 是大于5的质数,证明:p 4≡1(mod 240)。

一、单项选择题

1、若n >1,ϕ(n )=n-1是n 为质数的( )条件。 A.必要但非充分条件 B.充分但非必要条件 C.充要条件 D.既非充分又非必要条件

2、设n 是正整数,以下各组a ,b 使为既约分数的一组数是( )。 A.a=n+1,b=2n-1 B.a=2n-1,b=5n+2 C.a=n+1,b=3n+1

D.a=3n+1,b=5n+2

b

a

3、使方程6x+5y=C无非负整数解的最大整数C 是( )。 A.19

B.24 C.25

D.30

4、不是同余方程28x ≡21(mod 35)的解为( )。

A. x ≡2(mod 35) B. x≡7(mod 35) C. x≡17(mod 35) D. x≡29(mod 35) 5、设a 是整数,(1)a≡0(mod9) (2)a≡2010(mod9) (3)a的十进位表示的各位数码字之和可被9整除

(4)划去a 的十进位表示中所有的数码字9,所得的新数被9整除 以上各条件中,成为9|a的充要条件的共有( )。 A.1个 二、填空题

1、σ(2010)=__________;ϕ(2010)=__________。

202、数C 100的标准分解式中,质因数7的指数是__________。

B.2个 C.3个 D.4个

3、每个数都有一个最小质因数. 所有不大于10000的合数的最小质因数中,最大者是___。 4、同余方程24x ≡6(mod34)的解是__________。

5、整数n>1,且(n-1)!+1≡0(mod n),则n 为_______(填:素数或合数)。 6、3103被11除所得余数是__________。 7、

⎛60⎫

⎪=__________。 97⎝⎭

三、计算题

1、判定(ⅰ) 2x 3 - x 2 + 3x - 1 ≡ 0 (mod 5)是否有三个解;

(ⅱ) x 6 + 2x 5 - 4x 2 + 3 ≡ 0 (mod 5)是否有六个解?

32n -1

2、设n 是正整数,求C 1 的最大公约数。 2n , C 2n , , C 2n

3、已知a=18,m=77,求使a x ≡ 1 (mod m)成立的最小自然数x 。

四、证明题

1、若质数p ≣5, 且2p+1是质数,证明:4p+1必是合数。

2、设p 、q 是两个大于3的质数,证明:p 2≡q 2(mod 24)。

3、若x, y ∈R , (1)证明:[xy]≣[x][y]; (2)试讨论{xy}与{x}{y}的大小关系。 注:我们知道,[x+y]≣[x]+[y],{x+y}≢{x}+{y}。此题把加法换成乘法又如何呢?

4、证明:存在一个有理数 [k

c

,其中d

73

] 。 100

+

c d

]=[k

(提示:由(73,100)=1,利用裴蜀恒等式来证明)

初等数论练习题四

一、单项选择题 1、若F n =2

2n

+1是合数,则最小的n 是( ) 。

A. 2 B. 3 C. 4 D. 5

2、记号b a ‖a 表示b a |a, 但b a+1 /| a. 以下各式中错误的一个是( ) 。 A. 218‖20! B. 105‖50! C. 119‖100! D. 1316‖200! 3、对于任意整数n ,最大公因数(2n+1,6n-1)的所有可能值是( ) 。 A. 1 B. 4 C. 1或2 D. 1,2或4 4、设a 是整数,下面同余式有可能成立的是( ) 。

A. a2≡2 (mod 4) B. a2≡5 (mod 7) C. a2≡5 (mod 11) D. a2≡6 (mod 13) 5、如果a ≡b(mod m),c 是任意整数,则下列错误的是( ) A .ac ≡bc(mod mc) 二、填空题

1、d(10010)=_________;φ(10010)=_________。

2、对于任意一个自然数n ,为使自N 起的n 个相继自然数都是合数,可取N=_________。 3、为使3n-1与5n+7的最大公因数达到最大的可能值,则整数n 应满足条件________。 4、在5的倍数中,选择尽可能小的正整数来构成模12的一个简化系,则这组数是______。 5、同余方程26x+1≡33 (mod 74)的解是_________。 6、不定方程5x+9y=86的正整数解是_________。 7、

⎛54⎫

⎪=_________。 ⎝89⎭

B .m|a-b C .(a,m)=(b,m) D .a=b+mt,t∈Z

三、计算题

1、设n 的十进制表示是13xy 45z ,若792∣n ,求x ,y ,z 。

2、求3406的末二位数。

3、求(214928+40)35被73除所得余数。

四、证明题

1、设a 1, a2, , a m 是模m 的完全剩余系,证明: (1)当m 为奇数时,a 1+ a2+ + a m ≡0(mod m); (2)当m 为偶数时,a 1+ a2+ + a m ≡

ϕ(m )

m

(mod m)。 2

2、证明:若m >2,a 1, a2, , a ϕ(m)是模m 的任一简化剩余系,则

∑a

i =1

i

≡0(modm ).

3、设m > 0是偶数,{a 1, a2, , a m }与{b 1, b 2, , b m }都是模m 的完全剩余系,证明: {a 1 + b 1, a 2 + b 2, , a m + b m }不是模m 的完全剩余系。

4、证明:(1)2730∣x 13-x ;

(2)24∣x(x+2)(25x-1) ; (3)504∣x 9-x 3;

(4)设质数p >3,证明:6p ∣x p -x 。

2

初等数论练习题五

一、单项选择题

1、设x 、y 分别通过模m 、n 的完全剩余系,若( )通过模mn 的完全剩余系。 A.m 、n 都是质数,则my + nx B. m≠n ,则my + nx C. (m ,n )=1,则my + nx D. (m ,n )=1,则mx + ny 2、1×3×5×…×2003×2005的标准分解式中11的幂指数是( ) 。 A.100 B.101 C.99 D.102 3、n 为正整数,若2n -1为质数,则n 是( ) 。

A. 质数 B. 合数 C.3 D.2k (k为正整数) 4、从100到500的自然数中,能被11整除的数的个数是( ) 。 A.33 B.34 C.35 D.36

5、模100的最小非负简化剩余系中元素的个数是( ) 。

A.100 B.10 C.40 D.4 二、填空题

1、同余方程ax +b≡0(modm ) 有解的充分必要条件是______。 2、高斯称反转定律是数论的酵母,反转定律是指____________。 3、20112011被3除所得的余数为______。 4、设n 是大于2的整数,则(-1)ϕ(n)=______。 5、单位圆上的有理点的坐标是____________。

6、若3258×a 恰好是一个正整数的平方,则a 的最小值为______。

⎛58⎫

7、 ⎪=_________

⎝97⎭

三、计算题

1、求32008×72009×132010的个位数字。

2、求满足ϕ(mn)=ϕ(m )+ϕ(n ) 的互质的正整数m 和n 的值。

3、甲物每斤5元,乙物每斤3元,丙物每三斤1元,现在用100元买这三样东西共100斤,问各买几斤?

四、证明题

1、已知2011是质数,则有2011|99⋅⋅ ⋅9。

2010个

2、设p 是4n+1型的质数,证明若a 是p 的平方剩余,则p-a 也是p 的平方剩余.

3、已知p,q 是两个不同的质数,且a p-1≡1 (mod q), aq-1≡1 (mod p), 证明:a pq ≡a (mod pq)。

4、证明:若m,n 都是正整数,则ϕ(mn)=(m,n )ϕ([m,n ])。

初等数论练习题六

一、填空题

1、为了验明2011是质数,只需逐个验算质数2,3,5,…p 都不能整除2011,此时,质数p 至少是__________。

2、最大公因数(4n+3,5n+2)的可能值是__________。

3、设3α∣40! ,而3α+1/|40! ,即3α‖40! ,则α=__________。

4、形如3n+1的自然数中,构成模8的一个完全剩余系的最小的那些数是__________。 5、不定方程x 2+y2=z2,2|x, (x,y)=1, x,y,z>0的整数解是且仅是_________ 。 6、21x ≡9 (mod 43)的解是__________。 7、

⎛73⎫

⎪ =__________。 ⎝199⎭

二、计算题 1、将

17

写成三个既约分数之和,它们的分母分别是3,5和7。 105

2、若3是质数p 的平方剩余,问p 是什么形式的质数? 3、判断不定方程x 2+23y =17是否有解? 三、证明题

1、试证对任何实数x, 恒有〔x 〕+〔x+〕=〔2x 〕。

2、证明:(1)当n 为奇数时,3∣(2+1);

n

1

2

|(2+1)(2)当n 为偶数时,3/。

3、证明:(1)当3∣n (n 为正整数)时,7∣(2-1);

n

n

|(2+1) (2)无论n 为任何正整数,7/。

4、设m >0,n >0,且m 为奇数,证明:(2-1,2+1)=1。

m

n

n

初等数论练习题七

一、单项选择题

1、设a 和b 是正整数,则(

A .1 [a , b ][a , b ], ) =( )。 a b B .a C .b D .(a,b)

2、176至545的正整数中,13的倍数的个数是( )。

A .27 B .28 C .29 D .30

3、200! 中末尾相继的0的个数是( )。

A .49 B .50 C .51 D .52

4、从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( )。

A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数

5、设n 是正整数,下列选项为既约分数的是( )。

A .21n +4n +12n -1n +1 B . C . D . 14n +32n -15n +23n +1

二、填空题

1、314162被163除的余数是___________。

2、同余方程3x ≡5(mod13)的解是___________。

3、(365) =________。 1847

4、[-π]=___________。

5、为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。

6、如果一个正整数具有21个正因数,问这个正整数最小是___________。

7、同余方程x 3+x2-x-1≡0(mod 3)的解是___________。

三、计算题

1、求不定方程x + 2y + 3z = 41的所有正整数解。

2、有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。已知这队士兵不超过170人,问这队士兵有几人?

23、判断同余方程x ≡286(mod443) 是否有解?

四、证明题

1、设(a , m ) = 1,d 0是使a d ≡ 1 (mod m ) 成立的最小正整数,则

(ⅰ) d 0∣ϕ(m ) ;

j (ⅱ) 对于任意的i ,j ,0 ≤ i , j ≤ d 0 - 1,i ≠ j ,有a i ≡/a (mod m ) 。

2、证明:设a ,b ,c ,m 是正整数,m > 1,(b , m ) = 1,并且

b a ≡ 1 (mod m ) ,b c ≡ 1 (mod m ) ,

记d = (a , c ) ,则b d ≡ 1 (mod m ) 。

3、设p 是素数,p ∣b n - 1,n ∈N ,则下面的两个结论中至少有一个成立:

(ⅰ) p ∣b d - 1对于n 的某个因数d

(ⅱ) p ≡ 1 ( mod n )。

|n ,p > 2,则(ⅱ) 中的mod n 可以改为mod 2n 。 若2/

初等数论练习题八

一、单项选择题

1、若n > 1,则(n - 1)! ≡ -1 (mod n ) 是n 为素数的( )。

A.必要但非充分条件 B.充分但非必要条件 C.充要条件 D.既非充分又非必要条件

2、小于545的正整数中,15的倍数的个数是( )。

A.34 B.35 C.36 D.37

3、500! 的标准分解式中7的幂指数是( )。

A.79 B.80 C.81 D.82

4、以下各组数中,成为模10的简化剩余系的是( )。

A.1,9, -3, -1 B.1, -1,7,9 C.5,7,11,13 D. -1,1, -3,3

5、设n 是正整数,下列选项为既约分数的是( )。 A. 3n +1n +12n -1n +1 B. C. D. 5n +25n +23n +12n -1

二、填空题

1、σ(120)=______________。

2、7355的个位数字是______________。

3、同余方程3x ≡5(mod14)的解是______________。

4、(17)=______________。 23

5、[-2]=______________。

6、如果一个正整数具有6个正因数,问这个正整数最小是______________。

7、同余方程x 3+x2-x-1≡0(mod 5)的解是______________。

三、计算题

1、已知563是素数,判定方程x 2 ≡ 429 (mod 563)是否有解。

2、求出模23的所有的二次剩余和二次非剩余。

3、试求出所有正整数n ,使得1n +2n +3n +4n 能被5整除。

四、证明题

1、证明:若质数p >2,则2P -1的质因数一定是2pk +1形。

2、设(m,n )=1,证明:m

a p +b p

) =1或p 。 3、设(a,b )=1,a+b≠0,p 为一个奇质数,证明:(a +b , a +b

ϕ(n)+n ϕ(m) ≡1 (mod mn)。

初等数论练习题九

一、单项选择题

1、以下Legendre 符号等于-1的30被-1是( ) 。 3⎫A. ⎛ ⎪ ⎝11⎭4⎫⎛5⎫⎛6⎫B. ⎛ ⎪ C. ⎪ D. ⎪ ⎝11⎭⎝11⎭⎝11⎭

2、100至500的正整数中,能被17整除的个数是( ) 。

A. 23 B. 24 C. 25 D. 26

3、设 3α|500!,但3α+1/,则α=( ) 。 |500!

A. 245 B.246 C.247 D. 248

4、以下数组中,成为模7的完全剩余系的是( ) 。

A. -14,-4,0,5,15,18,19

C. -4,-2,8,13,32,35,135 B. 7,10,14,19,25,32,40 D. -3,3,-4,4,-5,5,0

5、设n 是正整数,则以下各式中一定成立的是( ) 。

A.(n +1,3n +1)=1 B. (2n -1,2n +1)=1 C. (2n , n +1)=1 D. (2n +1, n -1)=1

二、填空题

1、25736被50除的余数是________________。

2、同余方程3x ≡5(mod16) 的解是________________。

3、不定方程9x -12y =15的通解是________________。

4、 ⎛323⎫⎪ =________________。 ⎝41⎭

5、实数的小数部分记为{x } ,则 {-}=________________。

6、为使3n 与4n +1 的最大公因数达到最大的可能值,则整数n 应满足条件________。

7、如果一个正整数具有35个正因数,问这个正整数最小是________________。

三、计算题

1、解不定方程9x +24y -5z =1000。

2、设A = {x 1, x 2, , x m }是模m 的一个完全系,以{x }表示x 的小数部分,若(a , m ) = 1,求

ax +b ∑m 。 i

i =1m 54

3、设整数n ≥ 2,求:

1≤i ≤n (i , n ) =1∑i 。即在数列1, 2, , n中,与n 互素的整数之和。

ϕ(m )

i =14、设m > 1,(a , m ) = 1,x 1, x 2, ⋯, x ϕ(m ) 是模m 的简化剩余系,求:∑ax i 。 m

其中{x }表示x 的小数部分。

四、证明题

1、证明:设a 是有理数,b 是使ba 为整数的最小正整数,若c 和ca 都是整数,则 b ∣c 。(提示:利用带余数除法解决。)

2、设p 是素数,证明:

(ⅰ) 对于一切整数x ,x p - 1 - 1 ≡ (x - 1) (x - 2) (x - p + 1) (mod p ) ;

(ⅱ) (p - 1)! ≡ - 1 (mod p ) 。

⎛a ⎫n |n ,p 是奇质数,p ∣a -1, 则 3、证明:若2/ p ⎪⎪=1。

⎝⎭

m ()=1。 4、证明:若p=4m+1是一质数,则p

5、设p 是奇质数,p ≡ 1 (mod 4),则:(±(p -12) ! ) ≡ -1 (mod p ) 。 2

初等数论练习题十

一、单项选择题

1、设p 是大于1的整数,如果所有不大于p 的质数都不能整除p ,则p 一定是( )。

A. 素数 B. 合数 C. 奇数 D. 偶数

2、两个质数p ,q ,满足p+q=99,则

A.9413 B. 9413 194p q +的值是( )。 q p C. 94139413 D. 99111

3、2010!的标准分解式中,7的最高幂指数为( )。

A .331 B .332 C .333 D .334

4、n 为正整数,若2n +1为质数,则n 是( )。

A .质数 B .合数 C .1 D .2k (k为非负整数)

5、当n >2时,欧拉函数ϕ(n ) 一定是( )。

A .奇数 B .偶数 C .1 D .2

二、填空题

1、如果p 是质数,a 是整数,则有(a ,p )=1或者_______。

2、设p 是奇质数,(a,p)=1,则a 是模p 的平方非剩余的充要条件是_______。 3、1000开始到2010结束的所有整数中13的倍数有_______个。

4、2756839-1的末位数是_______。

5、不定方程ax+by=c有解的充要条件是______。

6、写出模12的一个最小非负简化系,要求每项都是7的倍数,此简化系为_______。

7、已知563是质数,则

三、计算题

1、若3是质数p 的平方剩余,问p 是什么形式的质数?

2、求使12347! 被35k 整除的最大的k 值。

四、证明题

1、证明:设p ≥7是一个质数,则存在唯一的一个正整数x ,使得: ⎛2⎫⎪=_______。 563⎝⎭

x ∈{1,2, , p -1}且120(p-6)! +x ≡0(mod p )。

2、已知9901是素数,试证:9901(17

4950+1) 。

3、证明:若p=10n -1是个质数,则p 55n -1-1。(提示:利用勒让德符号解决。)

4、设p=4n+3是质数,证明当q=2p+1也是质数时,梅森数M p =2p -1不是质数。由此证明:23|(2-1),47|(2-1),503|(2

5、证明:设p 是大于5的质数,则(p -1)! +p +1∈Z 。 p (p +1) 1123251-1)。

(利用Wilson 定理解决,只需证明:p(p+1) | (p-1)!+p+1。)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值