胡寿松《自动控制原理》第四版习题精解

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《自动控制原理》作为自动化和电气工程核心课程,涉及控制系统的行为、设计和分析。本书深入浅出讲解了系统模型、传递函数、根轨迹、频率特性等基本概念,并覆盖PID控制、状态空间法等现代控制理论。稳定性分析、控制器设计和高级控制策略如鲁棒控制和最优控制也是本书的重点。胡寿松教授第四版教材为该领域的重要著作,其习题答案部分为学习者提供了宝贵的自我检验和深入理解的工具。 自动控制原理答案(胡寿松 第四版)

1. 自动控制系统基础理论

1.1 自动控制系统的概念

自动控制系统是利用控制装置自动地对机器、设备或生产过程进行控制与调节的系统。它能够确保系统按照预期的方式运行,实现精确的输出跟踪和干扰抑制。

1.2 控制系统的基本组成

一个基本的自动控制系统通常由被控对象(或称为过程)、传感器、控制器和执行机构组成。被控对象是系统中需要控制的环节,传感器负责测量系统状态,控制器生成控制信号,执行机构则是使系统状态变化的设备。

1.3 开环控制与闭环控制

开环控制系统在控制过程中没有反馈环节,而闭环控制系统利用反馈信息来调整控制信号,可以提高系统的准确性和抗干扰能力。闭环控制是自动控制系统中最常见的形式,其中包括了负反馈控制和正反馈控制等类型。

在自动控制系统中,掌握基础理论是深入研究各类控制系统,如PID控制器、状态空间法等高级控制策略的前提。理解了这些基本概念,才能进一步探索系统的稳定性和性能优化等主题。

2. 系统模型与传递函数

2.1 系统模型的构建与分析

系统模型是自动控制系统分析与设计的基础,它能够帮助工程师理解和预测系统在不同输入下的动态行为。

2.1.1 系统模型的基本概念

系统模型是对实际物理系统的一种抽象表示,它可以是线性的也可以是非线性的,连续的或是离散的。在构建系统模型时,通常会忽略掉一些对系统分析影响较小的细节,只保留对系统动态特性起决定作用的元素。模型可以是数学方程、框图或仿真模型等形式。例如,在控制系统中,常见的模型包括传递函数模型、状态空间模型等。

2.1.2 系统模型的数学表达

数学表达是系统分析中最直接的工具。例如,一个简单的线性时不变系统可以用微分方程来描述其行为。假设有一个一阶系统:

a * y''(t) + b * y'(t) + c * y(t) = d * u(t)

其中 y(t) 为输出, u(t) 为输入, a, b, c, d 是系统参数。为了解这个系统,我们可以将上述二阶微分方程转化为传递函数。

2.2 传递函数的定义与特性

传递函数是描述线性系统输出与输入之间关系的数学模型,它是在拉普拉斯域中的一个比例表达式。

2.2.1 传递函数的定义

传递函数是线性定常系统的输出拉普拉斯变换与输入拉普拉斯变换之比。对于上面的一阶系统,其传递函数 H(s) 可以表示为:

H(s) = Y(s) / U(s) = d / (a*s^2 + b*s + c)

在上述传递函数中, s 是拉普拉斯变换中的复变量。

2.2.2 传递函数的计算方法

传递函数的计算方法一般包括以下步骤:

  1. 根据系统的微分方程建立数学模型。
  2. 对微分方程进行拉普拉斯变换,将时间域中的微分方程转换为复频域中的代数方程。
  3. 解代数方程,得到输出和输入之间的比例关系,即传递函数。

例如,对于一个由电阻R和电容C组成的简单RC电路,我们可以得到其电压传递函数 Vout(s) / Vin(s)

2.1.1 和 2.1.2 小结

从构建系统模型到传递函数的计算,我们已经涉及了自动控制系统设计的两个基础概念。在下一节中,我们将对传递函数的特性进行深入分析,并通过案例说明如何使用这些特性来分析系统行为。

3. 根轨迹分析方法

3.1 根轨迹的基本原理

3.1.1 根轨迹的定义与性质

根轨迹法是分析和设计控制系统的有力工具,它能够直观地显示系统性能随控制器参数变化的情况。根轨迹是系统开环传递函数极点随参数变化的轨迹图。当系统开环传递函数的参数在一定范围内变化时,其极点在复平面上移动,形成了根轨迹。

根轨迹的基本性质是:

  • 根轨迹是从开环极点开始,到开环零点结束的连续曲线。
  • 根轨迹对称于实轴。
  • 根轨迹的分支数等于开环极点数。
  • 根轨迹在实轴上的段数等于开环零点和开环极点数之差。
  • 根轨迹在每个分支上的渐近线角度由开环零点和极点的差决定。
  • 根轨迹与虚轴的交点可以通过Routh-Hurwitz准则来确定。

3.1.2 根轨迹的绘制步骤

绘制根轨迹的步骤如下:

  1. 确定开环传递函数,并写出其标准形式。
  2. 计算开环传递函数的极点和零点,分别标注在s平面图上。
  3. 根据根轨迹性质,找到根轨迹与虚轴的交点。
  4. 计算根轨迹的分支数和渐近线角度。
  5. 标出根轨迹的起始和终止点。
  6. 利用角度准则和幅度准则确定根轨迹上的特定点。
  7. 连接这些点,绘制出完整的根轨迹。

3.2 根轨迹分析的应用

3.2.1 系统稳定性分析

通过根轨迹法,我们可以判断系统的稳定性。系统的稳定条件是所有闭环极点必须位于复平面的左半部。通过观察根轨迹的终点和与虚轴的交点,我们可以确定系统的稳定边界。如果根轨迹全部位于左半平面,则系统是稳定的;如果有根轨迹穿越虚轴进入右半平面,则系统是不稳定的。

3.2.2 控制系统设计

根轨迹不仅用于分析系统稳定性,还可以用于控制器设计。通过在根轨迹图上选择合适的增益和极点配置,可以设计出满足性能要求的控制器。例如,我们可以通过移动根轨迹来调整系统响应速度和阻尼比,从而改善系统的动态性能。

接下来,我们将深入探讨根轨迹的绘制步骤,并通过一个实际案例来演示如何使用MATLAB工具绘制根轨迹,并进行系统的稳定性分析和控制器设计。

4. 频率特性及稳定性指标

在自动控制系统的设计和分析中,频率特性与稳定性指标是核心内容之一。通过它们,可以了解系统在不同频率下的响应特性,以及系统是否满足稳定性要求。本章首先会探讨频率特性的分析方法,之后着重于系统稳定性的判定标准,为读者提供深入的理论知识和实用的分析技巧。

4.1 频率特性的分析方法

4.1.1 频率响应的基本概念

频率响应描述了控制系统对正弦输入信号响应的频率特性。系统的频率响应通常由幅度和相位两个部分组成。幅度响应表达了系统对于不同频率的输入信号的放大或者衰减程度,而相位响应则描述了输入信号与输出信号之间的时间延迟关系。

在实际应用中,频率响应的分析方法包括绘制Bode图和Nyquist图等,这些方法能够直观地展示系统对于频率变化的响应特性。

4.1.2 Bode图和Nyquist图的绘制与分析

Bode图

Bode图是由两个图表组成的,分别表示系统的幅度响应(Amplitude Response)和相位响应(Phase Response)。Bode图的横轴通常是频率的对数尺度,这使得绘制和解读在宽频带上的系统响应变得容易。

绘制Bode图的过程通常包括以下步骤:

  1. 写出系统的传递函数 ( G(s)H(s) ),其中 ( s = j\omega ),( \omega ) 是角频率。
  2. 将传递函数 ( G(s)H(s) ) 分解为一系列简单因素(如极点、零点和增益项)。
  3. 根据这些因素绘制幅度图和相位图。
  4. 将所有的曲线叠加,得到最终的Bode图。
Nyquist图

Nyquist图是一个复平面图,其横轴为实部,纵轴为虚部。Nyquist图展示了系统在复频率平面上的响应。它同样用于评估系统的稳定性。

绘制Nyquist图的步骤如下:

  1. 将传递函数 ( G(s)H(s) ) 代入 ( s = j\omega )。
  2. 计算不同频率下的 ( G(j\omega)H(j\omega) ) 值。
  3. 从高频到低频绘制 ( G(j\omega)H(j\omega) ) 的轨迹。

绘制这些图表时,可以使用软件工具(如MATLAB),来快速生成准确的图形。

4.2 系统稳定性的判定标准

4.2.1 稳定性指标的定义

稳定性是控制系统最重要的性质之一。一个稳定的系统指的是当施加一个有限的输入时,系统能够在有限的时间内达到一个新的平衡状态。稳定性指标通常基于系统特征方程的根来判断。例如,实轴上位于右半平面的根会使得系统不稳定。

4.2.2 判定系统稳定性的方法

稳定性可以通过多种方法来判定,包括劳斯稳定判据、奈奎斯特稳定判据以及根轨迹法等。这里主要介绍奈奎斯特稳定判据。

奈奎斯特稳定判据

奈奎斯特稳定判据使用Nyquist图来判断系统是否稳定。其基本原理是:

  • 对于开环传递函数 ( G(s)H(s) ),如果其极点都在左半平面,则闭环系统是稳定的当且仅当Nyquist图包围点(-1, 0)的次数等于开环极点数在右半平面的个数。

奈奎斯特稳定判据的优点在于它允许我们仅通过开环系统的频率响应信息来判断闭环系统的稳定性,这使得它在实际应用中非常有用。

在实际操作中,判定过程如下:

  1. 根据开环传递函数 ( G(s)H(s) ),绘制其Nyquist图。
  2. 计算开环极点数量 ( N )。
  3. 检查Nyquist图是否包围点(-1, 0),包围的次数即为 ( Z )。
  4. 如果 ( Z = N ),闭环系统是稳定的。

通过本章节的介绍,我们可以看到频率特性及稳定性指标在控制系统中的重要作用。后续章节会结合这些理论知识,进一步探讨PID控制策略、系统设计与性能优化等方面的内容。

5. PID控制策略详解

5.1 PID控制器的基本原理

5.1.1 PID控制的定义

比例-积分-微分(Proportional-Integral-Derivative,简称PID)控制是一种常用的反馈控制策略,在工业控制系统中得到了广泛应用。PID控制器根据设定值(SP)与实际输出值(PV)之间的差值(即偏差e(t)),通过比例(P)、积分(I)和微分(D)三个环节进行调节,以达到控制的目的。

比例环节负责减小偏差,积分环节负责消除稳态误差,而微分环节则可以预测偏差的未来趋势,增加系统的阻尼,改善系统的动态响应。

5.1.2 PID控制器的工作原理

PID控制器的工作原理可以用以下数学模型表示:

u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt

其中: - u(t) 代表控制器的输出信号; - Kp、Ki、Kd 分别代表比例、积分、微分的增益系数; - e(t) 代表当前时刻的偏差值,即设定值与实际输出值的差; - ∫e(t)dt 代表偏差的积分; - de(t)/dt 代表偏差的微分。

PID控制器将这三部分通过一定的运算规则组合起来,形成一个连续的反馈控制过程。

5.2 PID参数的整定与优化

5.2.1 参数整定的基本方法

PID参数的整定是指通过调整比例、积分、微分三个参数的大小,使得系统性能达到最优化。常见的整定方法包括:

  1. 手动试错法:工程师根据经验逐渐调整PID参数,观察系统响应并进行修改,直至找到满意的控制效果。
  2. Ziegler-Nichols法:通过开环实验或者闭环临界振荡实验确定一组推荐的PID参数。
  3. 软件工具法:利用现代控制理论和优化算法,通过计算机软件辅助进行参数寻优。

5.2.2 参数优化的策略与实践

参数优化通常需要考虑系统的稳定性和动态响应等性能指标。在实际操作中,可以利用MATLAB/Simulink、LabVIEW等软件工具来辅助参数的优化。

下面提供一个简单的代码示例,演示如何在MATLAB环境中使用PID Tuner工具进行PID控制器的参数优化:

% 假设已经构建了系统的传递函数模型G(s)
G = tf(1, [1 3 2]); % 一个简单的传递函数示例

% 使用PID Tuner工具
PIDTuner(G);

% 调用PID Tuner后,软件会打开一个交互式界面,让你手动调整PID参数
% 或者使用软件内置的自动整定功能寻找最佳的PID参数

通过以上的代码和解释,我们可以看到,参数整定并不是一个单一的操作过程,而是一个需要反复试验和调整的优化过程。在整定过程中,系统工程师需要对PID控制器的性能进行持续的监测和评估,直到找到一个既满足稳定性要求,又能满足快速性和准确性的参数组合。

6. 状态空间法与多输入多输出系统设计

6.1 状态空间模型的构建与分析

6.1.1 状态空间模型的定义

状态空间法是一种现代控制理论中用于描述和分析线性或非线性动态系统的方法。在这种方法中,系统被表示为一组一阶微分方程或差分方程,这些方程涉及到所谓的“状态变量”。状态变量代表了系统的内部状态,它们的集合形成了状态向量,该向量在任意时刻定义了系统的状态。

状态空间模型的数学表达通常为:

    dx/dt = Ax + Bu
    y = Cx + Du

其中, x 是状态向量, u 是输入向量, y 是输出向量, A 是系统矩阵, B 是输入矩阵, C 是输出矩阵, D 是直接传输矩阵。

6.1.2 状态空间模型的性质

状态空间模型能够展示系统的内部动态和外部影响,它不仅适用于线性系统,还能通过适当的非线性变换处理非线性系统。状态空间模型的一个主要特点是它可以清晰地分离系统的内部动态(由矩阵A描述)和外部影响(由矩阵B和D描述)。

此外,状态空间模型可以方便地用于设计状态反馈控制器、观测器和解耦控制器等。通过状态空间模型,可以实现对系统性能的预测和系统稳定性分析。

状态空间模型的稳定性分析依赖于特征方程 |λI - A| = 0 的根的性质,如果所有特征值的实部都是负数,那么系统是稳定的。

状态空间模型还可以帮助我们理解系统的可控性和可观测性,这对于设计有效的控制器和观测器至关重要。

graph LR
    A[系统矩阵A] -->|影响| B[系统内部动态]
    B --> C[系统的状态变量]
    C --> D[输出向量y]
    E[输入矩阵B] -->|影响| B
    F[输出矩阵C] -->|定义| D
    G[直接传输矩阵D] -->|影响| D

6.2 多输入多输出系统的控制策略

6.2.1 MIMO系统的概念

多输入多输出(MIMO)系统是指具有多个输入和多个输出的控制系统。与单输入单输出(SISO)系统相比,MIMO系统能提供更复杂的控制策略和更高的性能。MIMO系统的控制问题更为复杂,因为需要同时考虑多个输入和输出变量之间的相互作用。

6.2.2 MIMO系统的控制设计

MIMO系统的设计通常涉及解耦和控制分配问题。解耦是为了减少或消除不同输出之间的相互影响,使得每个输出能够独立地响应对应的输入。控制分配则是将总的控制命令合理地分配给各个执行器,以达到期望的控制效果。

一个常见的MIMO系统设计方法是矩阵分式分解(MFD),它将系统模型的传递函数矩阵分解为若干个更简单的子矩阵,这些子矩阵可以用来设计各自的控制器。此外,线性矩阵不等式(LMI)和奇异值分解(SVD)也是设计MIMO系统时常用的技术。

graph LR
    A[输入向量u] -->|解耦控制| B[控制分配]
    B --> C[执行器]
    D[输出向量y] <---|反馈| C
    E[设计目标] -->|解耦| A
    F[解耦控制策略] -->|实现| B

在设计MIMO系统时,需要考虑到系统矩阵A、输入矩阵B和输出矩阵C的特殊性质。例如,矩阵的秩、特征值分布和可控可观测性,这些都是设计有效控制器时必须考虑的因素。

综上所述,状态空间法和MIMO系统设计是现代控制理论中的核心内容,它们为复杂系统的建模和控制提供了强有力的工具。通过状态空间模型的构建与分析,以及MIMO控制策略的制定,可以实现对动态系统的深入理解和精确控制。

7. 控制系统稳定性分析工具

7.1 稳定性分析的基本工具

控制系统稳定性分析是自动控制领域的一个重要方面。稳定性的基本概念是指系统在受到扰动后,能够返回到平衡状态或者进入新的平衡状态的能力。

7.1.1 稳定性分析的理论基础

理论分析方法包括劳斯稳定判据、奈奎斯特稳定判据和根轨迹方法等。劳斯稳定判据是根据系统的特征方程,通过构建劳斯表来判断系统稳定性的方法。奈奎斯特稳定判据则利用开环传递函数的频率响应来确定闭环系统的稳定性。根轨迹方法提供了一种基于开环传递函数的根(即系统特征方程的解)随某个系统参数变化的图示方法。

7.1.2 常用稳定性分析工具的介绍

除了传统的理论方法外,现代控制理论中经常使用MATLAB等计算软件进行稳定性分析。例如,MATLAB的控制系统工具箱提供了诸如 step , bode , nyquist , rlocus 等函数来绘制系统的响应曲线、频率响应和根轨迹图。

% 示例代码:绘制开环系统的根轨迹图
num = [1]; den = [1 3 2 0]; % 定义传递函数系数
rlocus(num, den);
title('Root Locus of an Open-loop System');
grid on;

7.2 稳定性分析的实践应用

在实际应用中,稳定性分析常用于预测和验证控制系统在各种工况下的表现。

7.2.1 实际系统稳定性分析案例

考虑一个典型的一阶控制系统,通过MATLAB进行稳定性分析可以得到闭环系统的根轨迹图,判断系统是否稳定,并分析系统对参数变化的敏感性。

7.2.2 稳定性改善措施的实施

如果分析结果表明系统不稳定或对参数变化过于敏感,则需采取措施进行改善。例如,调整PID控制器的参数、增加系统的阻尼比或引入补偿网络等策略。

% 示例代码:设计PID控制器以改善系统稳定性
Kp = 2; Ki = 5; Kd = 1; % 设定PID控制器参数
sys = tf(Kp + Ki/s + Kd*s, [1 3 2]); % 构建闭环传递函数
step(sys);
title('Step Response with PID Controller');
grid on;

通过以上章节的讨论,我们逐步深入地分析了控制系统稳定性分析工具的应用价值和实践步骤。在下一章,我们将探索控制器设计与性能优化的策略和方法。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《自动控制原理》作为自动化和电气工程核心课程,涉及控制系统的行为、设计和分析。本书深入浅出讲解了系统模型、传递函数、根轨迹、频率特性等基本概念,并覆盖PID控制、状态空间法等现代控制理论。稳定性分析、控制器设计和高级控制策略如鲁棒控制和最优控制也是本书的重点。胡寿松教授第四版教材为该领域的重要著作,其习题答案部分为学习者提供了宝贵的自我检验和深入理解的工具。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值