pytorch 7月19日学习---dcgan代码学习3

训练流程

1. LOSS & OPTIMIZER

###########   LOSS & OPTIMIZER   ##########

criterion = nn.BCELoss()

optimizerD = torch.optim.Adam(netD.parameters(),lr=opt.lr, betas=(opt.beta1, 0.999))

optimizerG = torch.optim.Adam(netG.parameters(),lr=opt.lr, betas=(opt.beta1, 0.999))

(1) nn.BCELoss( )

二分类用的交叉熵,用的时候需要在该层前面加上 Sigmoid 函数。

如果是二分类的话,因为只有正例和反例,且两者的概率和为 1,那么只需要预测一个概率就好了,因此可以简化成

Loss (xi,yi) = −wi [yi log xi+(1−yi) log (1−xi) ]

注意这里 x,y可以是向量或者矩阵,i只是下标;xi表示第 i 个样本预测为 正例 的概率,yi表示第 i个样本的标签,wi表示该项的权重大小。可以看出,loss, x, y, w 的维度都是一样的。

(2)torch.optim.xxx( ) 

为了使用torch.optim,需先构造一个优化器对象Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数。 
要构建一个优化器optimizer,你必须给它一个可进行迭代优化的包含了所有参数(所有的参数必须是变量s)的列表。 然后,您可以指定程序优化特定的选项,例如学习速率,权重衰减等。

optimizerD = torch.optim.Adam(netD.parameters(),lr=opt.lr, betas=(opt.beta1, 0.999))

优化步骤: 
所有的优化器Optimizer都实现了step()方法来对所有的参数进行更新,它有两种调用方法:

optimizer.step()

这是大多数优化器都支持的简化版本,使用如下的backward()方法来计算梯度的时候会调用它。

for input, target in dataset:

    optimizer.zero_grad()

    output = model(input)

    loss = loss_fn(output, target)

    loss.backward()

    optimizer.step()

optimizer.step(closure)

 

2. GLOBAL VARIABLES

##########   GLOBAL VARIABLES   ###########

noise = torch.FloatTensor(opt.batchSize, opt.nz, 1, 1)

real = torch.FloatTensor(opt.batchSize, nc, opt.imageSize, opt.imageSize)

label = torch.FloatTensor(opt.batchSize)

real_label = 1

fake_label = 0



noise = Variable(noise)

real = Variable(real)

label = Variable(label)

if(opt.cuda):

    noise = noise.cuda()

    real = real.cuda()

label = label.cuda()

3. TRAINING

判别器

netD.zero_grad()

训练真实数据 resize > output = netD(real)

                                    errD_real = criterion(output, label)

                                   errD_real.backward()

训练虚假数据 resize > noise产生 > fake = netG(noise) >output=netD(fake.detach())

                                                                                         errD_fake = criterion(output,label)

                                                                                         errD_fake.backward()

errD = errD_fake + errD_real

optimizerD.step()

生成器 

netG.zero_grad()

训练虚假数据 output = netD(fake)

                       errG = criterion(output, label)

                       errG.backward()

注意:此时label标签为1,判别器训练时虚假数据标签为0

optimizerG.step()

########### Training   ###########

for epoch in range(1,opt.niter+1):

    for i, (images,_) in enumerate(loader):

        ########### fDx ###########

        netD.zero_grad()

        # train with real data, resize real because last batch may has less than

        # opt.batchSize images

        real.data.resize_(images.size()).copy_(images)

        label.data.resize_(images.size(0)).fill_(real_label)



        output = netD(real)

        errD_real = criterion(output, label)

        errD_real.backward()



        # train with fake data

        label.data.fill_(fake_label)

        noise.data.resize_(images.size(0), opt.nz, 1, 1)

        noise.data.normal_(0,1)



        fake = netG(noise)

        # detach gradients here so that gradients of G won't be updated

        output = netD(fake.detach())

        errD_fake = criterion(output,label)

        errD_fake.backward()



        errD = errD_fake + errD_real

        optimizerD.step()



        ########### fGx ###########

        netG.zero_grad()

        label.data.fill_(real_label)

        output = netD(fake)

        errG = criterion(output, label)

        errG.backward()

        optimizerG.step()



        ########### Logging #########

        print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f '

                  % (epoch, opt.niter, i, len(loader),

                     errD.data[0], errG.data[0]))



        ########## Visualize #########

        if(i % 50 == 0):

            vutils.save_image(fake.data,

                        '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),

                        normalize=True)



torch.save(netG.state_dict(), '%s/netG.pth' % (opt.outf))

torch.save(netD.state_dict(), '%s/netD.pth' % (opt.outf))

源代码网址:https://github.com/sunshineatnoon/Paper-Implementations/tree/master/dcgan

 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
pytorch-cnn-股票预测是一个使用PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。 这个项目的目的是通过训练一个卷积神经网络模型,来预测股票价格的未来走势。卷积神经网络是一种深度学习模型,通过自动提取特征并学习数据之间的非线性关系来进行预测。 在这个源码中,首先进行数据的预处理。通常会使用历史股票价格的时间序列作为输入数据,以及对应的目标值作为标签。数据预处理的操作可能包括数据标准化、缺失值填充等等。 接下来,我们构建卷积神经网络模型。在源码中,可能会使用PyTorch提供的卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)等组件来构建模型,以及使用ReLU、Dropout等激活函数和正则化方法来提高模型的性能。 然后,我们定义损失函数,通常选择均方误差(Mean Squared Error)或交叉熵损失(Cross Entropy Loss)作为模型训练的目标函数,以便优化模型的预测结果。 最后,我们使用训练数据来训练模型,并使用测试数据来评估模型的性能。在源码中,我们会定义训练函数和测试函数,通过迭代训练,不断调整模型参数,以使得模型能够更准确地预测未知数据的输出结果。 总结来说,pytorch-cnn-股票预测-源码是一个基于PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。通过数据预处理、构建网络模型、定义损失函数和训练评估等步骤,可以使用这个代码来进行股票预测模型的训练和测试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值