1. 简述几种你了解的词向量?
①离散表示主要有:one-hot、Bag of Words、TF-IDF
②分布式表示有:基于矩阵的分布表示(主要有Glove模型、共现矩阵、SVD分解等等)和基于神经网络的分布表示(主要有word2vec、NNLM、RNNLM、elmo、bert等等)
2. 简述分布式词向量的优点?
优点:1⃣️利用上下文信息进行词的表示可以计算语义相似性、2⃣️解决维度稀疏的问题、3⃣️解决了近义词的表示问题
3. 列举三个学习完本课程的问题?
1⃣️embedding的维度大小表示有什么物理意义吗?
2⃣️对于未出现的词,分布式表示是怎么做的?
4.分别画出神经网络语言模型、CBOW和Skip-gram模型的数据流程图?
NNLM:
CBOW:
Skip-gram:
5.根据实验结果分析为什么论文中表4中skip-gram比CBOW的模型效果好?
skip-gram的准确率高于cbow的原因:对于相同的训练集,skip-gram通过中心词去训练上下文输入数据要多很多