nlp paper:【第2篇】基于神经网络的词向量(Efficient Estimation of Word Representations in Vector Space)

1.    简述几种你了解的词向量?

①离散表示主要有:one-hot、Bag of Words、TF-IDF
②分布式表示有:基于矩阵的分布表示(主要有Glove模型、共现矩阵、SVD分解等等)和基于神经网络的分布表示(主要有word2vec、NNLM、RNNLM、elmo、bert等等)

2.    简述分布式词向量的优点?

优点:1⃣️利用上下文信息进行词的表示可以计算语义相似性、2⃣️解决维度稀疏的问题、3⃣️解决了近义词的表示问题

3.    列举三个学习完本课程的问题?

1⃣️embedding的维度大小表示有什么物理意义吗?

2⃣️对于未出现的词,分布式表示是怎么做的?

4.分别画出神经网络语言模型、CBOW和Skip-gram模型的数据流程图?

NNLM:

CBOW:

Skip-gram:

5.根据实验结果分析为什么论文中表4中skip-gram比CBOW的模型效果好?

skip-gram的准确率高于cbow的原因:对于相同的训练集,skip-gram通过中心词去训练上下文输入数据要多很多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值