- 博客(28)
- 收藏
- 关注
原创 vscode debug时设置在debug console中选中指定代码运行快捷键
搜索:selectionToRepl。首先点击左下角设置,点击快捷方式。
2024-10-29 10:58:12 152
原创 一种在寻找最大组合面积中最少的组合数量-如何找到所有最少完全覆盖目标区域的组合
打乱和分割:随机打乱多边形及其对应的名称,然后将它们分成两部分。合并:合并多边形的前半部分。筛选:筛选出不包含在前半部分合并多边形中的后半部分多边形。最终合并:将剩余的多边形与之前合并的多边形合并。输出:返回筛选后的多边形及其名称。# 确保多边形和名称的数量匹配assert len(polygons) == len(names), "多边形和名称的数量必须相等。# 第一步:随机打乱多边形和名称# 将打乱后的列表分成两半# 第二步:合并前半部分的多边形。
2024-09-05 19:09:53 268
原创 Mamba UNet 代码详解
代码定义了一个深度学习模型的部分组件,主要用于图像处理。它结合了卷积神经网络(CNN)和自注意力机制来处理图像数据。以下是对这段代码的详细解释:环境配置翻译并通顺处理后的内容如下:pip install causal-conv1d>=1.4.0`:安装用于Mamba模块内的简单因果卷积Conv1d层的高效实现。:安装核心Mamba包。:安装核心Mamba包和因果卷积Conv1d。:安装核心Mamba包和开发依赖项。你也可以从此代码库中构建并安装源代码,命令为。
2024-08-24 21:24:55 1055
原创 pytorch 环境配置通用
使用以下命令安装指定版本的PyTorch、Torchvision和Torchaudio,这些库是深度学习和计算机视觉项目中的核心库。首先,创建一个新的Conda环境,其中包含Python 3.9和相关的CUDA工具包,以确保深度学习库的兼容性。为了加速软件包的下载和安装,可以添加清华大学开源软件镜像站作为Conda的镜像源。至此,开发环境已经配置完成,可以开始进行深度学习的开发和实验。除了深度学习库,还需要安装一些常用的Python库,如。激活刚刚创建的环境,以便在该环境中安装和使用库。
2024-08-24 11:58:10 532
原创 TransUNet作为baseline需要做的实验方法
在进TransUNet的网络结构并添加新的注意力机制时,实验的设计和执行将是验证你改进效果的关键。
2024-08-24 11:51:09 944
原创 DJI无人机影像地理坐标系校正
代码的主要功能是将无人机拍摄的图像中的每个像素位置转换为地理坐标(经纬度),并计算图像的实际物理尺寸。坐标转换从图像的像素坐标开始,转换为归一化的图像平面坐标。将这些坐标转换为相机坐标系中的坐标,考虑到焦距的影响。坐标系转换利用无人机的姿态(俯仰角、滚转角、偏航角)将相机坐标系的坐标转换到无人机的世界坐标系。地理坐标计算将世界坐标系中的坐标转换为地理坐标(经纬度)。这里采用简单的地球模型来近似计算地理位置。物理尺寸计算基于图像的分辨率、传感器尺寸和焦距,计算图像的实际物理宽度和高度(以米为单位)
2024-08-23 11:04:23 786 1
原创 PS-AIGC
Auto-Photoshop-StableDiffusion-Pluginhttps://github.com/AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-PluginPython launch.py --api
2024-08-09 17:05:45 376
原创 一种提升高分辨率遥感图像水体提取效果的语义分割方法
通过以上步骤,验证了基于深度学习的水体提取方法的有效性。模型在处理多波段数据时,通过结合原始波段和标签波段,能够充分利用标签信息,提高水体识别的精度和泛化能力。通过实验发现,大部分水域都可以识别出来,同时存在阴影也被错误识别的问题,且这种问题存在于大部分区域,导致结果基本很难应用。在实验二中,输入模型的数据为原始四波段数据加上标签,共五个波段,输出为全数据分割的标签,数据块大小同样为 256x256。在实验一中,输入模型的数据为原始的四波段光谱数据,输出为全数据分割的标签,数据块大小为 256x256。
2024-07-31 18:52:59 283
原创 Planet卫星影像批量下载代码说明
可参考:[https://zhuanlan.zhihu.com/p/589081189?utm_id=0)#定义查询条件# [# [# ],# ]# ]# }needdate=unique_acquired_dates,unique_acquired_dates为根据查询的数据,set后的唯一日期列表hadnames=getallorders(orders_url,pagenum=100)#获取已有下载的任务download_dir=''#设置下载路径。
2023-10-14 01:32:10 434
原创 十分钟搞定win10 Conda装Detectron2(torch-gpu)
点击https://github.com/facebookresearch/fvcore下载,切换到setup.py所在目录,然后执行指令。点击https://github.com/philferriere/cocoapi下载,然后执行以下指令,另外还需要先安装Cython。下载https://github.com/facebookresearch/detectron2。(1) 安装cocoapi。(2) 安装fvcore。(3) 安装ninja。
2023-10-06 13:40:20 1105
原创 Conda修改默认环境创建路径
注 : Windows操作系统创建的 .condarc 文件通常在 C:\Users\User_name 这个目录下;注 : Linux操作系统创建的 .condarc 文件通常在/home/User_name 这个目录下。
2023-10-06 12:52:33 594
原创 基于planet 3m影像对农作物耕地进行分割
我们在此笔记本中的目标是自动识别 Planet 图像中的作物,然后创建表示这些作物的地理配准 geojson 要素。在此笔记本中,我们训练了一个 KNN 分类器,以根据 2 年前的地面实况数据预测一张行星图像上的裁剪/非裁剪像素,并使用该分类器预测另一张行星图像中的裁剪/非裁剪像素。然后,我们对分类影像进行分割,并创建地理配准的 geojson 要素,以勾勒出预测的作物。K-最近邻(KNN)是一种用于分类的监督学习技术。它是一种简单的机器学习算法。有关更多详细信息,请参阅维基百科。
2023-09-02 19:10:02 281
原创 基于Planet 3m分辨率影像检测船只
本笔记本演示了如何使用 Python 的 scikit-image 库中的算法检测和计算卫星图像中的物体。在此示例中,我们将在旧金山湾的一小块区域内查找船只,并生成每艘船只的 PNG 图标及其周围轮廓。这是使用剪切和装运 API 生成的图像示例。要使用自己的图像进行测试,请替换下面的参数。
2023-09-02 14:38:23 202 1
原创 vscode实现自动解析本地库代码内容
输入python.auto,选择第一个Extra paths,点击settings.json。引用时,需要以下代码完成,接着导入该库中的内容,即可使用提示。打开vscode,点击左下角设置按钮。复制本地库的代码路径。
2023-08-17 14:01:24 249
原创 AI全自动生成PPT(完全免费)
打开网址chat-gpt3.5利用标题生成PPT大纲:https://beta.theb.ai/home。可见ai可自动生成相关内容,排版,插入图片等信息。例如《以成都五个旅游景点介绍为主题的PPT模板》
2023-08-08 01:57:24 13174 2
原创 Acolite下载
官网:http://odnature.naturalsciences.be/remsem/software-and-data/acolite。软件及文档下载地址:https://github.com/acolite/acolite/releases/tag/20221114.0。
2023-08-04 19:10:23 235
转载 Webgis技术总结
WebGIS开发相关内容分为了以下几个部分:(1)OSM下载开源矢量数据,数据较全,但是质量一般;(2)地理空间数据云下载DEM影像;(3)datav下载行政区 http://datav.aliyun.com/tools/atlas/ ;(4)互联网瓦片抓取,如百度、高德、谷歌、bing等;一般原则,能用软件搞定的就用软件搞定,不行就写几行代码处理一下软件工具:(1)ArcGIS、Qgis:一般看习惯,两个结合使用,各有优劣,大部分的数据处理问题都能解决;
2023-06-29 18:05:34 158
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人