- 博客(9)
- 收藏
- 关注
原创 书生·浦语大模型实战营06课堂笔记
针对普通用户,评测的结果可以了解模型的特色能力和实际效果;针对开发者,评测的结果可以监控模型能力变化,知道优化模型生产;针对管理机构,依据评测的结果,可以整改大模型,减少大模型带来的社会风险;针对产业界,依据评测结果,可以找出最适合产业应用的模型,赋能真实场景。
2024-01-24 21:41:12
469
1
原创 书生·浦语大模型实战营06课堂作业
使用 OpenCompass 评测 InternLM2-Chat-7B 模型在 C-Eval 数据集上的性能。
2024-01-24 20:48:55
458
1
原创 书生·浦语大模型实战营05课堂作业
对internlm-chat-7b模型进行量化,并同时使用KV Cache量化,使用量化后的模型完成API服务的部署,分别对比模型量化前后(将 bs设置为 1 和 max len 设置为512)和 KV Cache 量化前后(将 bs设置为 8 和 max len 设置为2048)的显存大小。(3)在(1)的基础上开启KV Cache量化。(4)在(2)的基础上开启KV Cache量化。(2)在(1)的基础上采用W4A16量化。(5)使用Huggingface推理。
2024-01-22 21:34:59
472
原创 书生·浦语大模型实战营05课堂笔记
英伟达设备上部署的全流程解决方案,包括模型轻量化、推理和服务。其中接口包含:python、gRPC以及RESTful;轻量化策略包含:4bit权重及8bit k/v;推理引擎包含:turbomind及pytorch;服务层包含:api server、gradio及triton inference server。
2024-01-22 21:29:36
1065
原创 书生·浦语大模型实战营04课堂作业
构建数据集,使用 XTuner 微调 InternLM-Chat-7B 模型, 让模型学习到它是你的智能小助手,效果如下图所示,本作业训练出来的模型的输出需要替换成自己名字或昵称!本次将模型的输出改为yanglisha。
2024-01-14 19:33:21
445
1
原创 书生·浦语大模型实战营04课堂笔记
一种是增量预训练:使用场景是让基座模型学习到一些新知识,如某个垂类领域的常识。其训练数据包括文章、书籍、代码等另一种是指令跟随,其使用场景是让模型学会对话模板,根据人类指令进行对话。训练数据为高质量对话、问答数据。①LORA全称:LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS;②LLM的参数量主要集中在模型的Linear,训练这些参数时会消耗大量的显存。
2024-01-14 16:10:09
1247
1
原创 书生·浦语大模型实战营03课堂笔记
①传统LLM的知识时效性收限制,文本库不能实时更新,因此如何让LLM获取最新知识是重中之重;②传统LLM文本信息仅限用于通用环境中,针对特殊领域例如医疗、汽车等无法提供准确答复;③传统LLM的定制化成本极高,需要配置专用预料库。分为RAG(检索增强生成)和Finetune(微调)。其中RAG的核心思想是:给大模型外挂知识库,对于用户的提问,首先从知识库中匹配提问对应相关的文档,将文档和提问一起提交给大模型来生成回答,提升大模型的知识储备。
2024-01-13 18:19:56
1014
1
原创 书生·浦语大模型实战营03课后作业
基于本地部署的 InternLM,继承 LangChain 的 LLM 类自定义一个 InternLM LLM 子类,从而实现将 InternLM 接入到 LangChain 框架中。LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150。整合13构建检索问答链的代码后,定义一个类,该类负责加载并存储检索问答链,并响应 Web 界面里调用检索问答链进行回答的动作。5.创建目录,并且将InternLM模型复制到创建的目录中。
2024-01-13 09:55:05
903
1
原创 书生浦语大模型实战课程02
1.使用 InternLM-Chat-7B 模型生成 300 字的小故事。第一步:使用 Hugging Face 官方提供工具进行下载。2.熟悉 hugging face 下载功能,使用。运行完成后,使用cat命令即可查看下载内容。的 config.json 文件到本地。1.完成浦语·灵笔的图文理解及创作部署。的 config.json 文件。在启动SSH服务后,在服务器中输入。python 包,下载。第二步:创建环境并激活环境。第二步:Lagent 安装。第五步:demo运行。
2024-01-07 22:39:24
381
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人