MATLAB在窄带干扰抑制算法模拟中的应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:窄带干扰抑制是通信系统中关键技术,尤其在GPS、GLONASS和COMPASS等扩频信号接收中至关重要。MATLAB代码集narrowband_interference_surpression提供了一个平台,用于模拟和测试不同的窄带干扰抑制策略。代码集包含了信号和干扰模型的定义、干扰抑制算法的实现、仿真评估、可视化以及参数调整,以优化和分析算法性能。 narrowband_interference_surpression:这些matlab代码,用于模拟位于信号模式下的窄带干扰抑制算法,是GPS,GLONASS,COMPASS信号等扩频信号

1. 窄带干扰抑制在通信系统中的作用

在现代通信系统中,窄带干扰是一种常见的信号污染源,它能够显著地降低通信质量,甚至使通信中断。窄带干扰通常来自其他无线设备或非预期信号源,这些干扰源在通信频带内产生狭窄的干扰信号,对信息的接收造成破坏。因此,窄带干扰抑制技术对于确保通信系统的可靠性至关重要。

窄带干扰抑制技术通过多种算法来减少或消除干扰信号,提高信号的清晰度。这些技术包括频域滤波、自适应滤波、盲源分离等,它们能够有效分离有用信号与干扰信号,使通信系统能够维持较高的数据传输速率和较低的误码率。在实际应用中,窄带干扰抑制不仅涉及复杂的信号处理知识,还必须考虑到算法的实时性能和硬件实施的可行性。

在下一章节中,我们将深入探讨MATLAB模拟窄带干扰抑制算法的重要性,以理解其在信号处理和通信系统设计中的关键作用。

2. MATLAB模拟窄带干扰抑制算法的重要性

在当今的通信系统设计与测试中,对信号质量的追求从未止步。窄带干扰抑制作为提升通信系统稳定性和可靠性的重要环节,其研究和应用具有深远的意义。MATLAB作为一种强大的数学计算和仿真软件,提供了一种高效的途径来进行窄带干扰抑制算法的模拟与优化。

2.1 通信系统干扰概述

2.1.1 干扰的类型及特性

在通信系统中,干扰源是多方面的,可以从不同的角度进行分类。从频率上分,可以分为同频干扰、邻道干扰、交叉调制干扰和互调干扰等。从时间上分,可以分为持续干扰、脉冲干扰和突发干扰等。

同频干扰是通信设备接收的信号频率与干扰信号频率相同或非常接近时所产生的干扰,这种干扰最为常见,也是对通信系统影响最大的一种。邻道干扰则是在相邻频道中,由于频道选择性不好或接收机非线性导致的干扰。交叉调制干扰和互调干扰通常是由设备非线性引起的。

2.1.2 窄带干扰对通信系统的影响

窄带干扰是一种特定频率或频率带宽的干扰,它能严重降低通信系统的性能。它往往表现为窄带的、持续的信号,能够显著影响特定通信信道的信号质量。窄带干扰抑制的主要目标就是减少这种干扰对通信系统的影响,保障信号的传输质量。

窄带干扰对通信系统的影响体现在多个方面。首先,它会引起误码率上升,从而导致通信失败。其次,窄带干扰会使接收信号的信噪比下降,影响信号的接收质量。另外,它还可能掩盖信号中的重要信息,如低信噪比信号中的弱小信号,影响信号处理和解码。

2.2 MATLAB在信号处理中的应用

2.2.1 MATLAB的优势与功能

MATLAB(Matrix Laboratory)是一个高性能的数学计算软件,它集数值计算、算法开发、数据可视化于一体,非常适合信号处理和通信系统设计的工作。MATLAB具有强大的数学和符号计算能力,内置多种工具箱,其中信号处理工具箱、通信工具箱等特别适合于通信系统中的窄带干扰抑制问题的研究。

MATLAB能够提供直观的编程环境,大量的内置函数和丰富的工具箱支持,大大简化了模拟和分析的复杂度。此外,MATLAB的用户社区广泛,网络上存在大量的代码资源和解决方案,方便进行快速的算法验证和实验。

2.2.2 MATLAB在通信系统模拟中的地位

在通信系统的模拟仿真中,MATLAB占据了核心的地位。利用MATLAB的通信工具箱,可以轻松模拟通信系统的各种场景,如调制解调、信号传输、噪声和干扰的添加等。同时,MATLAB支持自定义算法的实现,可以根据具体需求,开发和测试新的干扰抑制算法。

MATLAB具备实时仿真的能力,这一点在通信系统的研发过程中尤为重要。用户可以在MATLAB环境下快速构建通信系统模型,进行系统级的验证和性能评估。此外,MATLAB的图形用户界面(GUI)功能使得用户能够直观地观察信号处理结果,便于调试和分析。

下一章节将深入探讨窄带干扰抑制算法的具体实现和MATLAB中的应用,以实现对通信系统性能的提升。

3. narrowband_interference_surpression代码集的功能概览

3.1 代码集结构与组成

3.1.1 主要功能模块介绍

narrowband_interference_surpression 代码集旨在提供一个完整的窄带干扰抑制解决方案。它包含多个模块,每个模块都有特定的功能:

  • 数据输入输出模块(I/O) :负责处理信号样本的输入和处理结果的输出。它支持不同格式的数据导入,如CSV或MATLAB专用格式,以及将处理后的信号保存为不同格式。

  • 信号预处理模块 :实现信号的滤波、归一化等预处理步骤,以确保后续模块能高效运行。

  • 干扰检测与定位模块 :负责检测信号中的窄带干扰,并确定干扰的频率范围和强度。

  • 干扰抑制算法模块 :包含多种已实现的干扰抑制算法,如自适应滤波器和频谱减法等,支持用户根据需求选择和配置。

  • 性能评估模块 :提供算法性能评估工具,包括信噪比(SNR)的计算、误码率(BER)的评估等。

  • 用户界面(UI)模块 :为用户提供一个直观的交互界面,方便用户进行各种操作,如选择算法、调整参数和显示结果。

3.1.2 各模块间的关系与协作

各个模块之间的协作关系是通过精心设计的数据流程和接口来实现的。数据从输入模块进入系统,经过预处理模块后,传递给干扰检测模块。一旦检测到干扰,数据会被送至干扰抑制算法模块处理。处理后的信号将返回到预处理模块进行后处理,之后被送往性能评估模块进行分析。用户界面模块提供与用户的交互接口,并将用户的选择和指令映射到其他模块。通过这种方式,各个模块协同工作,形成一个完整的窄带干扰抑制流程。

3.2 代码集的安装与运行

3.2.1 环境配置要求

为了运行 narrowband_interference_surpression 代码集,需要满足以下环境配置要求:

  • 操作系统 :Windows/Linux/macOS
  • 处理器 :Intel Core i5 或相当性能处理器
  • 内存 :至少8GB RAM
  • MATLAB版本 :R2018a 或更高版本
  • 额外工具箱 :Signal Processing Toolbox和Communications Toolbox
  • 依赖的外部库 :无

3.2.2 运行示例与结果解释

首先,确保系统满足上述配置要求。然后,将代码集下载并解压到本地计算机。打开MATLAB环境,使用 addpath 命令添加代码集所在的文件夹路径。例如:

addpath('路径/narrowband_interference_surpression');

一旦路径添加成功,用户就可以通过调用主函数 main.m 来运行示例代码:

main;

运行示例代码将自动加载一个包含窄带干扰的信号样本,接着依次执行信号预处理、干扰检测、抑制算法应用和性能评估等步骤。最后,用户界面将展示出处理前后的信号波形对比以及性能评估结果。这些结果包括原始信号和处理后信号的频谱图,以及算法性能的相关指标,如SNR的提升值和BER的降低值。

通过这些步骤,用户不仅可以直观地看到窄带干扰抑制的效果,还可以根据性能评估结果来判断所用算法的适用性和效果,为实际通信系统中的干扰抑制提供参考依据。

4. 信号模型定义与扩频信号特性

4.1 信号模型的基础理论

4.1.1 信号模型的数学描述

信号模型是理解和分析通信系统性能的关键工具,特别是在研究扩频通信系统时,信号模型为我们提供了一种简化的方式来描述复杂的信号传输过程。数学上,信号模型通常由信号的时域和频域表示来定义。

在时域中,信号可以表示为连续或离散的函数。连续信号可以表示为 ( s(t) ),而离散信号则通常表示为 ( s[n] ),其中 ( t ) 或 ( n ) 分别代表时间变量。信号模型必须考虑到信号的带宽、带宽效率以及信号的功率谱密度(PSD)等关键参数。例如,扩频信号的时域模型可以描述为: [ s(t) = \sum_{k=-\infty}^{+\infty} p(t - kT_p) d_k c(t - kT_p) ] 其中,( p(t) ) 是脉冲形状函数,( T_p ) 是脉冲周期,( d_k ) 是数据符号,( c(t) ) 是扩频码序列。

频域模型则涉及到信号的傅里叶变换,描述了信号的频率成分。扩频信号的频域模型通常显示为一个展宽的频谱,这是由于将信息数据乘以伪随机扩频码序列造成的。扩频信号的频谱密度函数可以表示为: [ S(f) = D(f) \cdot C(f) ] 其中,( D(f) ) 是数据信号的频谱,( C(f) ) 是扩频码序列的频谱。

4.1.2 扩频信号的分类与特点

扩频信号通常分为两类:直接序列扩频(DSSS)信号和频率跳变扩频(FHSS)信号。每种信号都有其独特的特点和应用场景。

直接序列扩频(DSSS)

DSSS信号是通过将信息数据直接与高速的伪随机码序列相乘来实现扩频。这种信号的自相关特性表现出良好的峰形,使得即使在存在窄带干扰的情况下,也可以通过匹配滤波器来检测信号。DSSS信号具有以下特点: - 信号带宽远大于原始数据的带宽。 - 高的抗干扰能力。 - 适用于多个用户同时传输数据,且相互之间干扰较小,即具有较好的多址接入能力。

DSSS信号可以进一步分为窄带和宽带两种类型,宽带DSSS通常指的是那些具有较宽传输带宽的系统。

频率跳变扩频(FHSS)

FHSS信号是通过在频域内快速改变载波频率来实现扩频。这种技术通过在给定的频率跳变图案中随机切换载波频率,从而在时间上分散信号的能量,使得截获和干扰都变得更加困难。FHSS信号的特点包括: - 较好的抗窄带干扰能力。 - 在有信号干扰的环境下仍能保持通信的可靠性。 - 可以实现频谱的动态使用,提高频谱的使用效率。

FHSS系统通常用于军事通信,因为它们具有低截获概率和低检测概率的优点。

在分析这些信号模型时,通常需要使用数值分析和信号处理的技术。例如,使用MATLAB可以进行信号的频域分析和扩频处理,同时也可以通过MATLAB来模拟信号在不同信道下的传输特性。

4.2 扩频技术的实现原理

4.2.1 直接序列扩频(DSSS)

直接序列扩频技术是一种将数字数据与一个高速伪随机码(PN码)序列直接相乘的技术。这种技术的关键在于使用一个远大于信号带宽的伪随机码来扩展信号频谱。实现DSSS的主要步骤包括: 1. 数据信号通过比特级的串行传输。 2. 伪随机码序列生成器产生一个与数据信号同步的PN序列。 3. 数据信号与PN序列进行逐位的乘法操作。 4. 扩频后的信号通过调制器调制到一个高频载波上。

在MATLAB环境中,可以通过定义数据序列和PN序列,然后使用矩阵操作实现这些步骤。以下是DSSS实现的一个简单代码段:

% 假设data为二进制数据序列,pn为伪随机码序列
spread_signal = mod(data .* pn, 2); % 逐位相乘并取模
% 继续将spread_signal调制到载波上

在上述代码中, mod 函数用于实现逐位的乘法,其中通过 .* 实现逐元素的乘法操作,并通过取模实现0和1的表示。

4.2.2 频率跳变扩频(FHSS)

频率跳变扩频技术的工作原理是根据预定的频率跳变图案在多个频率间跳变,从而在时间和频率上实现信号的分散。FHSS信号的实现步骤包括: 1. 定义一个频率跳变图案,即一系列载波频率。 2. 根据数据信号的位流,决定载波频率的跳变顺序。 3. 将数据信号通过调制器调制到跳变频率序列中相应的载波上。

在MATLAB中,可以通过定义频率跳变序列,然后利用循环或条件语句控制载波频率的跳变,从而模拟FHSS信号的生成过程。以下是一个简单的示例代码:

% 假设bit_stream为二进制数据位流,hop_sequence为频率跳变序列
for i = 1:length(bit_stream)
    carrier_freq = hop_sequence(mod(i - 1, length(hop_sequence)) + 1);
    modulated_signal(i) = modulatecarrier(bit_stream(i), carrier_freq);
end

在这个示例中, modulatecarrier 是假设的一个函数,用于在指定频率上对数据信号进行调制。 hop_sequence 是一个包含可能载波频率的数组,它根据输入位流的位值选择不同的载波频率。

通过上述讨论,我们可以看到DSSS和FHSS作为扩频技术的两种实现方式,在MATLAB中可以得到有效的模拟与实现。这些扩频技术是无线通信系统抵抗干扰、提高传输安全性的基石。

5. 干扰模型的模拟与特性设定

5.1 窄带干扰的建模方法

窄带干扰是通信系统中常见的一种干扰形式,通常由其他通信系统或设备发射的信号造成。为了有效抑制窄带干扰,首先需要对其建模,以模拟实际通信环境中可能遇到的干扰情况。

5.1.1 干扰信号的数学表达

在数学上,窄带干扰可以被视为叠加在有用信号上的随机过程。假设一个纯净的基带信号为 s(t),窄带干扰信号可以表示为 I(t),则实际接收的信号 r(t) 可以表示为:

r(t) = s(t) + I(t)

干扰信号 I(t) 通常具有随机的振幅和频率特性,可能由多个窄带干扰源共同组成。在建模时,可以将 I(t) 表示为一系列正弦波的叠加,每个正弦波对应一个干扰源:

I(t) = \sum_{i=1}^{N} A_i \cos(2\pi f_i t + \phi_i)

其中, A_i f_i φ_i 分别是第 i 个干扰源的振幅、频率和相位。

5.1.2 干扰信号的特性参数

为了模拟实际环境中的干扰信号,需要设定一系列特性参数。这些参数包括但不限于:

  • 振幅( A ) :影响干扰信号的强度。
  • 频率( f ) :描述干扰信号的频率位置。
  • 相位( φ ) :影响干扰信号的时域波形。
  • 带宽( BW ) :描述干扰信号的频域宽度。
  • 功率谱密度( PSD ) :表示单位频带内的功率。

这些参数可根据实际应用场景和背景噪声来设定,以确保模拟出的干扰信号尽可能接近真实情况。

5.2 实际干扰的模拟与仿真

为了在仿真环境中模拟窄带干扰,我们需要生成相应的干扰信号,并将其添加到纯净信号中。

5.2.1 窄带干扰的生成过程

在MATLAB中,我们可以使用以下步骤生成窄带干扰信号:

  1. 定义干扰信号的参数,如振幅、频率和采样率。
  2. 创建一个时间向量,用于生成正弦波信号。
  3. 使用正弦函数生成干扰信号。
  4. 将干扰信号添加到纯净信号中。
% 定义参数
A = 1; % 振幅
f = 0.1; % 频率(Hz)
fs = 1000; % 采样率(Hz)
t = 0:1/fs:1-1/fs; % 时间向量

% 生成纯净信号
s = cos(2*pi*0.01*t);

% 生成干扰信号
I = A * sin(2*pi*f*t);

% 生成带干扰的信号
r = s + I;

5.2.2 干扰信号的分类与特性设置

在仿真中,我们可能会遇到不同类型的干扰信号。例如,某些干扰可能是固定的频率点,而另一些则可能是变化的。因此,根据干扰的来源和特性,我们可以设置不同的干扰模型:

  • 固定频率干扰 :当干扰源的频率固定不变时。
  • 扫频干扰 :当干扰源的频率在一定范围内扫描时。
  • 脉冲干扰 :短时的、强度较高的干扰信号。

对于不同类型的干扰信号,我们需要调整参数以匹配预期的干扰特性。例如,对于脉冲干扰,我们可以引入一个时间窗口,使得干扰仅在该时间窗口内生效。

% 定义脉冲干扰参数
pulse_duration = 0.1; % 脉冲持续时间(s)
pulse_time = 0.5; % 脉冲发生时间(s)

% 生成脉冲干扰信号
I_pulse = A * sin(2*pi*f*t) .* (t >= pulse_time & t < pulse_time + pulse_duration);

% 应用脉冲干扰到纯净信号
r_pulse = s + I_pulse;

通过上述步骤,我们可以模拟出不同特性的窄带干扰信号,并将其应用于通信系统的仿真中,以便测试和优化干扰抑制算法的效果。

6. 干扰抑制算法的种类与实现

在现代通信系统中,干扰抑制算法的种类繁多,每种算法都有其特定的应用场景和优缺点。本章节将深入探讨这些算法的基本原理,以及如何通过MATLAB实现这些算法,并对它们的性能进行比较分析。

6.1 干扰抑制算法的基本原理

6.1.1 空间滤波与时间滤波

在通信系统中,空间滤波和时间滤波是两种不同的干扰抑制技术。空间滤波技术主要应用于多输入多输出(MIMO)系统,通过控制各个天线阵元的相位和幅度,达到增强信号和抑制干扰的目的。时间滤波则主要依赖于信号处理中的时间序列分析,通过设计滤波器,使得信号通过滤波器时,干扰成分被削弱,而有用信号得以保留。

6.1.2 自适应干扰抑制技术

自适应干扰抑制技术是一种先进的信号处理方法,它可以根据信号环境的变化动态调整滤波器参数,以达到最佳的干扰抑制效果。自适应算法的核心是利用信号统计特性,通过迭代计算,优化滤波器的系数。常见的自适应算法包括最小均方误差(LMS)算法和递归最小二乘(RLS)算法等。

6.2 具体算法的MATLAB实现

6.2.1 算法的MATLAB编码实践

在MATLAB中实现干扰抑制算法,首先需要构建信号模型,然后设计相应的滤波器,并通过迭代计算更新滤波器系数。以下是一个简单的LMS算法在MATLAB中的实现代码示例:

% 假设x为接收信号向量,d为目标信号向量,N为滤波器长度
N = 10; % 滤波器长度
mu = 0.01; % 步长因子,影响收敛速度和稳定性
w = zeros(N, 1); % 初始化滤波器权重
e = zeros(length(x), 1); % 初始化误差向量
y = zeros(length(x), 1); % 初始化滤波器输出信号向量

for n = 1:length(x)
    % 信号预处理,例如中心化和能量归一化
    x_pre = (x(n) - mean(x)) / std(x);
    % LMS算法核心步骤:滤波器输出和误差计算
    y(n) = w' * x_pre;
    e(n) = d(n) - y(n);
    w = w + 2 * mu * e(n) * x_pre;
end

上述代码段展示了LMS算法的基本实现。其中, w 为滤波器权重, x_pre 为预处理后的输入信号, e 为误差信号, y 为滤波器输出。通过循环迭代,逐步调整滤波器权重,以达到抑制干扰的目的。

6.2.2 算法的性能比较分析

对于不同的干扰抑制算法,性能评估通常基于误码率(BER)、信噪比(SNR)改善程度、计算复杂度等指标。在MATLAB中,可以通过编写仿真脚本,模拟不同的通信场景,对算法进行性能评估。例如,通过改变信号的信噪比,观察不同算法下系统的误码率变化,从而得出哪种算法更适合特定的通信环境。

以LMS算法和RLS算法为例,通过MATLAB的仿真,我们可以得出如下比较结果:

% 假设x和d已经定义,初始化变量
BER_LMS = 0;
BER_RLS = 0;

% LMS算法性能评估
% 使用相同的初始化和参数设置
% ...
% 计算误码率
BER_LMS = sum(d ~= y) / length(d);

% RLS算法性能评估
% 使用相同的初始化和参数设置
% ...
% 计算误码率
BER_RLS = sum(d ~= y) / length(d);

% 输出结果
fprintf('LMS BER: %f\n', BER_LMS);
fprintf('RLS BER: %f\n', BER_RLS);

在实际应用中,还需要考虑算法的收敛速度、稳态误差、对信号特性的适应性等因素。通常,RLS算法具有比LMS更好的性能,但是计算复杂度也相对较高。根据不同的需求和系统资源,选择合适的干扰抑制算法至关重要。

通过以上的分析,我们可以看到,通过MATLAB实现干扰抑制算法并进行性能比较,是提高通信系统性能的有效手段。下一章节,我们将进一步探讨如何通过仿真评估方法来衡量这些算法的性能,并通过结果分析,为实际应用提供参考。

7. 仿真评估的方法和性能指标

在通信系统中,评估窄带干扰抑制算法的性能至关重要。正确选择评估方法和性能指标能够帮助我们了解算法的有效性及实际应用中的表现。本章节将介绍几种常用的性能评估指标,并分析这些评估方法的优劣。同时,我们将探讨如何分析仿真结果,并通过结果可视化来深入理解算法的性能。

7.1 评估方法的介绍与选择

7.1.1 常用的性能评估指标

在评估窄带干扰抑制算法时,我们通常关注以下几个性能指标:

  • 信噪比(Signal-to-Noise Ratio, SNR) :这是衡量信号强度与噪声水平的指标,直接影响通信系统的质量。
  • 误码率(Bit Error Rate, BER) :表示传输过程中发生错误的位与总传输位的比例。
  • 干扰抑制比(Interference Rejection Ratio, IRR) :用于衡量算法对干扰抑制的有效性。
  • 频谱效率 :评估算法在有限频谱资源下的数据传输速率。
  • 复杂度 :指算法实现所需的计算资源和时间资源。

7.1.2 评估方法的优劣分析

评估方法的选择取决于具体应用场景和需求。对于窄带干扰抑制算法,常见的评估方法有:

  • 仿真测试 :通过模拟软件(例如MATLAB)构建通信模型,应用不同算法处理信号,评估其性能指标。
  • 实际测试 :在真实通信环境中部署算法,获取实际数据进行分析。
  • 理论分析 :基于数学模型推导算法的理论性能极限。

仿真测试因其成本低、可重复性好、易于控制变量等优点,在研发阶段被广泛应用。然而,仿真环境往往不能完全模拟真实世界的所有情况,所以实际测试和理论分析也是必不可少的补充。

7.2 仿真结果的分析与解读

7.2.1 仿真数据的获取与处理

在获取仿真数据后,我们需要对数据进行预处理,包括去噪、归一化等步骤。接下来,我们可以使用统计分析方法计算出上述性能指标。例如,误码率的计算公式为:

BER = (错误的比特数) / (总传输的比特数)

7.2.2 结果的可视化展示与讨论

结果的可视化有助于我们直观地理解算法性能。我们可以使用MATLAB的绘图功能,如 plot scatter 等,来生成各种图表。对于时间序列数据,我们可以绘制图形来显示信号的时域波形。对于频谱分析,我们可以绘制频谱图来展示信号的频域特性。

下表是一个示例数据集,展示了两种不同算法处理后的误码率和信噪比结果:

| 算法 | SNR (dB) | BER | |------|----------|------| | 算法A | 15.4 | 1e-4 | | 算法B | 17.2 | 5e-5 |

接下来,我们可以使用MATLAB生成一个简单的柱状图来对比两种算法的误码率:

data = [1e-4, 5e-5];
labels = {'算法A', '算法B'};
bar(data, 'FaceColor', 'flat');
set(gca, 'xticklabel', labels);
title('不同算法的误码率对比');
xlabel('算法');
ylabel('误码率');

在此基础上,我们可以继续探讨算法性能的进一步优化方向,并通过调整参数来进行实验,优化算法性能。下一章将详细讨论这一过程。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:窄带干扰抑制是通信系统中关键技术,尤其在GPS、GLONASS和COMPASS等扩频信号接收中至关重要。MATLAB代码集narrowband_interference_surpression提供了一个平台,用于模拟和测试不同的窄带干扰抑制策略。代码集包含了信号和干扰模型的定义、干扰抑制算法的实现、仿真评估、可视化以及参数调整,以优化和分析算法性能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值