三个案例带你理解维度建模

一、 零售行业销售分析案例

  • 业务场景
    • 一家大型连锁零售企业希望通过数据分析来优化商品销售策略。该企业拥有众多门店,销售多种品类的商品,并且有详细的销售记录,包括销售时间、销售金额、购买的商品、顾客信息等。
  • 维度建模过程
    • 确定事实表:以销售事实表为核心,包含销售金额、销售数量等可度量的事实。每一条记录代表一次销售交易,例如,一笔交易的销售金额为100元,销售数量为2件商品,这些数据会记录在销售事实表中。
    • 构建维度表:
      • 时间维度:包括日期、星期、月份、季度和年份等属性。通过日期关联销售事实表,可以分析不同时间段的销售情况,如发现周末的销售额通常比工作日高,或者某些节日期间特定商品的销售高峰。
      • 商品维度:包含商品名称、商品类别、品牌、价格等属性。这有助于分析不同商品的销售表现,例如,发现某一品牌的电子产品在特定季度的销售增长迅速,或者某种食品在夏季的销量更高。
      • 店铺维度:有店铺名称、店铺位置(城市、商圈等)、店铺面积等属性。可以用于比较不同店铺的销售业绩,比如分析位于市中心商圈的店铺销售额是否高于郊区店铺。
      • 顾客维度:包括顾客姓名、年龄、性别、会员等级等属性。这使得企业能够了解不同顾客群体的购买行为,例如,发现会员顾客的平均购买金额高于非会员顾客。
  • 应用效果
    • 通过维度建模,企业可以进行多维度的销售分析。例如,分析某一特定商品在某个城市的各个店铺在不同季度的销售情况,或者分析不同年龄段的顾客在不同时间段购买不同品牌商品的趋势。这些分析结果帮助企业调整商品陈列、制定促销活动、优化店铺布局等,从而提高销售业绩。

二、 电信行业用户行为分析案例

  • 业务场景
    • 电信运营商想要深入了解用户的行为,包括通话、短信、数据流量使用等情况,以便提供更精准的服务和套餐推荐。
  • 维度建模过程
    • 确定事实表:构建用户通信事实表,其中包含通话时长、短信条数、数据流量使用量等事实。每一条记录代表用户的一次通信行为,例如,一次通话的时长为10分钟,使用的数据流量为100MB,这些数据会记录在事实表中。
    • 构建维度表:
      • 用户维度:包括用户姓名、年龄、性别、套餐类型、入网时间等属性。通过这个维度可以分析不同用户群体的通信行为,比如发现年轻用户使用的数据流量普遍高于年长用户。
      • 时间维度:包含日期、小时、星期等属性。这有助于分析用户在不同时间的通信行为,例如,发现晚上7 - 9点是通话和数据流量使用的高峰时段。
      • 业务类型维度:有通话业务、短信业务、数据业务等属性,并且可以进一步细分,如通话业务分为本地通话、长途通话等。这样可以分析不同业务类型的使用情况,比如发现数据业务的使用增长迅速,而短信业务的使用在逐渐减少。
      • 终端设备维度:包含手机品牌、型号、操作系统等属性。通过这个维度可以了解不同终端设备用户的通信行为差异,例如,发现使用某品牌高端手机的用户数据流量使用量较大。
  • 应用效果
    • 利用维度建模后的数据分析,电信运营商可以根据用户行为制定个性化的套餐。例如,对于数据流量使用量大的用户推荐大流量套餐,针对经常在特定时间段通话的用户提供通话优惠套餐。同时,还可以优化网络资源配置,根据不同业务类型和时间的使用高峰来分配带宽等资源。

三、 金融行业信贷风险评估案例

  • 业务场景
    • 银行需要评估信贷业务的风险,以便合理地发放贷款和控制坏账率。银行有大量的信贷数据,包括贷款申请信息、贷款发放记录、还款记录以及借款人信息等。
  • 维度建模过程
    • 确定事实表:构建信贷事实表,其中包含贷款金额、已还款金额、逾期金额等事实。每一条记录代表一笔贷款业务的相关事实,例如,一笔贷款的金额为50万元,已还款30万元,逾期金额为2万元,这些数据会记录在事实表中。
    • 构建维度表:
      • 借款人维度:包括借款人姓名、年龄、职业、收入、信用评分等属性。通过这个维度可以分析不同借款人特征对信贷风险的影响,比如发现收入不稳定的借款人逾期风险较高。
      • 贷款产品维度:包含贷款产品类型(如个人住房贷款、个人消费贷款等)、贷款期限、利率等属性。这有助于分析不同贷款产品的风险特征,例如,发现个人信用贷款的逾期率高于住房贷款。
      • 时间维度:有贷款发放日期、还款日期、逾期日期等属性。通过时间维度可以分析信贷风险随时间的变化情况,例如,发现贷款发放后的前6个月是逾期风险较高的时期。
      • 抵押物维度(如果有):包含抵押物类型(如房产、车辆等)、抵押物评估价值等属性。对于有抵押物的贷款,这个维度可以分析抵押物对信贷风险的保障程度,例如,发现房产抵押物的贷款逾期回收率高于车辆抵押物。
  • 应用效果
    • 银行可以利用维度建模后的数据分析来进行信贷风险评估。例如,在发放贷款前,根据借款人维度和贷款产品维度的信息,对新的贷款申请进行风险预测。在贷款发放后,通过时间维度和还款情况的分析,及时发现高风险贷款并采取催收或风险控制措施,从而降低坏账率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值