位运算符
位运算符主要针对两个二进制数的位进行逻辑运算,它包括:与(&)、或(|)、非(~)、异或(^)**
运算规则:
计算机中的数字运算都是以补码的形式进行的,所以在做为运算时,首先将数字转换为补码形式。
补码规则
正数的原码、反码、补码都相同。
负数的反码是除符号位为1外,其他位全取反
负数的补码是反码加1,符号位参与运算。(也可以说负数的补码是其绝对值的原码取反,末尾再加1)
与运算符
与运算符用符号"&"表示
两个操作数中的位都为1,结果才为1,否则结果为0。
示例:
int x = -6 & 8;
输出:x = 8;
分析:
-6的原码: 10000000 00000000 00000000 00000110
反码: 11111111 11111111 11111111 11111001
补码: 11111111 11111111 11111111 11111110
8的原码 : 00000000 00000000 00000000 00001000
正数的原码、反码、补码都相同即原码等于补码。
根据"&"运算符规则,可以得到:
-6&8 :00000000 00000000 00000000 00001000
即-6 & 8 = 8
或运算符
或运算符用符号" | "表示:
两个位只要有一个为1,那么结果就为1,否则为0。
int x = 6 | 10;
x = 14;
分析:
6的原码: 0110
10的原码:1010
正数的原码、反码、补码都相同,
根据两个位只要有一个为1,那么结果就为1,否则为0
6 | 10 的二进制码: 1110
1110转换成10进制为:14
非运算符
非运算符用符号“~”表示:
如果位为0,结果是1,如果位为1,结果为0。
int x = ~6;
x = -7
分析:
6的原码: 00000000 00000000 00000000 00000110
正数的原码、反码、补码都相同即原码等于补码。
~6(对6取反): 11111111 11111111 11111111 11111001
很明显最高位为1,即原码为负数。负数的补码是其绝对值的原码取反,末尾在加1。因此,我们将这个二进制补码进行还原:
末尾减1得反码:11111111 11111111 11111111 11111000
对反码取反的原码,可以有两种形式:
1、得到原码的绝对值:
00000000 00000000 00000000 00000111
这就是|~6| = 7 (~6的绝对值等于7)。
2、直接得到原码:
负数的反码是除符号位为1外,其他位全取反
10000000 00000000 00000000 00000111
所以, ~6 = -7
4、异或运算符
亦或运算符符号是“^”表示:
两个操作数的位中,相同则结果为0,不同则结果为1。
int x = 6^8
x = 14
分析:
6的原码(即补码): 00000000 00000000 00000000 00000110
8的原码(即补码): 00000000 00000000 00000000 00001000
根据异或运算符规则:
6 ^ 8 补码: 00000000 00000000 00000000 00001110
即 6 ^ 8 = 14
移位运算符
移位运算符操作的对象就是二进制的位,可以单独用移位运算符来处理int型整数。
<
" >> " : “有符号”右移运算符,将运算符左边的对象向右移动指定的位数。使用符号扩展机制也就是说,如果值为正,则在高位补0,如果值为负,则在高位补1。
' >>> ': "无符号"右移运算符,将运算符左侧的对象向右移动运算符右边指定的位数。采用0扩展机制,也就是说,无论值正负,都在高位补0。
x = 6;
x << 1 = 12
分析:
6的二进制码: 0110
将6的二进制码向左移动1位,低位补0得:
6 << 1 : 1100
所以 6<<1 = 12
6 >>1 = 3
分析:
6的二进制码: 0110
将6的二进制码向右移动1位,高位补0得:
6 >> 1 : 0011
所以 6>>1 = 3
num << n,相当于num*2^n
num >> n,相当于num/2^n