题目
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
思路:考虑动态规划分解子问题,前几段长度是固定的,因为只能剪成1和n-1,还不如就选自己的长度。从4开始遍历所有可能长度,如取2,则剩下的乘积已经算好了就是dp[4-2],找到最大的即可,赋值给dp[4]。
题解
public int cuttingRope(int n) {
if(n <= 3)
return n- 1;
//dp[i]表示长度为i的绳子可以被剪出来的最大乘积
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
//遍历后续每一个长度
for(int i = 4; i <= n; i++)
//可以被分成两份
for(int j = 1; j < i; j++)
//取最大值
dp[i] = Math.max(dp[i], j * dp[i - j]);
return dp[n];
}