13、剪绳子

文章讨论了一个关于绳子剪切的问题,目标是找到一种方法将绳子剪成整数段,使得各段长度乘积最大。通过动态规划的思路,从长度为3的绳子开始,利用之前计算的结果更新当前长度的最大乘积,对于每个新的长度i,遍历所有可能的分割方式,选取最大乘积。给出的Java代码实现展示了这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1

输入: 2

输出: 1

解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10

输出: 36

解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示

2 <= n <= 58

思路:考虑动态规划分解子问题,前几段长度是固定的,因为只能剪成1和n-1,还不如就选自己的长度。从4开始遍历所有可能长度,如取2,则剩下的乘积已经算好了就是dp[4-2],找到最大的即可,赋值给dp[4]。

题解
public int cuttingRope(int n) {
        if(n <= 3)
            return n- 1;
        //dp[i]表示长度为i的绳子可以被剪出来的最大乘积
        int[] dp = new int[n + 1];
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 3;
        //遍历后续每一个长度
        for(int i = 4; i <= n; i++)
            //可以被分成两份
            for(int j = 1; j < i; j++)
                //取最大值
                dp[i] = Math.max(dp[i], j * dp[i - j]);
        return dp[n];
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值