曲线与方程是解析几何的重点,解析几何问题都 离不开对曲线与方程的研究,因此求曲线的轨迹方程 就成了研究解析几何问题的一个重点问题.纵 观 曲 线的轨迹 方 程 问 题,可发现其题型典型.
一、直接法
直接法就是根据动点所满足的等量关系列出方 程,通过化简得到轨迹方程的方法,这 是 秋 曲 线 的 轨 迹方程最常用的方法.圆、圆锥曲线的方程就是根据此 法建立起来的.
二、定义法
定义法就是根据各种已知曲线(直 线、圆、圆 锥 曲 线等)的定义,结合题意直接设出这些曲线的方程,再 利用已知条件求出方程中各项系数的方法.
三、相关点法
当曲线上一个动点的变动与另外一个动点相关 时,可用曲线上该动点的坐标表示出另外一个点的坐 标,把此点的坐标代入制约条件就可得到所求曲线的 方程,这种方法就叫相关点法(又叫代入法).
四、参数法
参数法就是把曲线上动点的坐标先用相关参数 表示出来,然后消去参数就得到曲线的普通方程, zhezho引进参数表示曲线上动点坐标的方法就是 参数 法.
例题示例,分析及详细解答:















谢谢您的阅读与关注。