李超线段树 总结

李超线段树可以支持如下操作:

  1. 在区间\(l~r\)加入线段\(y=kx+b\)
  2. 询问直线\(y=x\)与所有线段交点的\(y\)坐标最值。

例题:模板题
做法:
对于线段树的每个区间,维护“最优线段”,即上面露出最多的线段。
在插入一条线段时,同样对应到区间上。
考虑如何在线段树的区间上加入一条线段:

如果该区间没有线段或在此区间内,两条线段没有交点,则直接修改,不是最优的线段扔掉。

否则,在无视其它所有线段的情况下,计算出交点,并判断哪条更优,把另一条下放到交点所在的儿子区间上。

由于每条线段最多下放\(O(logn)\)次,所以时间复杂度\(O(nlog^2n)\)

询问操作就是在所有包含它的区间的最优线段中找最优的。
有些类似标记永久化。

代码很好写(luogu4097):

#include <stdio.h> 
#include <math.h> 
double eps = 1e-5;
struct line {
    double k,b;
    int bh;
    line() {}
    line(double K, double B, int Bh) {
        k = K;b = B;bh = Bh;
    }
    line(int x1, int y1, int x2, int y2, int Bh) {
        k = double(y2 - y1) / (x2 - x1);
        b = y1 - k * x1;
        bh = Bh;
    }
    double f(int x) {
        return k * x + b;
    }
};
line zd[1600010];
bool bk[1600010];
double getjd(line a, line b) {
    if (fabs(a.k - b.k) < eps) return - 1;
    return (b.b - a.b) / (a.k - b.k);
}
bool check(line a, line b, int l, int r, int m, double x) {
    if (x < m) return a.f(r) > b.f(r);
    else return a.f(l) > b.f(l);
}
void pur(int i, int l, int r, line a) {
    if (!bk[i]) {
        zd[i] = a;
        bk[i] = true;
        return;
    }
    double x = getjd(a, zd[i]);
    if (x < l || x > r) {
        if (a.f(l) > zd[i].f(l)) zd[i] = a;
        return;
    }
    int m = (l + r) >> 1;
    if (check(zd[i], a, l, r, m, x)) {
        line t = a;
        a = zd[i];
        zd[i] = t;
    }
    if (l < r) {
        if (x <= m) pur(i << 1, l, m, zd[i]);
        else pur((i << 1) | 1, m + 1, r, zd[i]);
    }
    zd[i] = a;
}
void insert(int i, int l, int r, int L, int R, line a) {
    if (R < l || r < L) return;
    if (L <= l && r <= R) {
        pur(i, l, r, a);
        return;
    }
    int m = (l + r) >> 1;
    insert(i << 1, l, m, L, R, a);
    insert((i << 1) | 1, m + 1, r, L, R, a);
}
int getma(int i, int l, int r, int k, double & z) {
    int rt;
    if (bk[i]) {
        rt = zd[i].bh;
        z = zd[i].f(k);
    } else {
        rt = 0;
        z = -99999999;
    }
    if (l == r) return rt;
    int m = (l + r) >> 1,t;
    double tz;
    if (k <= m) t = getma(i << 1, l, m, k, tz);
    else t = getma((i << 1) | 1, m + 1, r, k, tz);
    if (tz > z || (fabs(tz - z) < eps && t < rt)) {
        z = tz;
        rt = t;
    }
    return rt;
}
int ma[40010],wz[40010];
int main() {
    int n,la = 0,m = 0;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        int lx;
        scanf("%d", &lx);
        if (lx == 0) {
            int k;
            scanf("%d", &k);
            k = (k + la - 1) % 39989 + 1;
            double z;
            la = getma(1, 1, 39989, k, z);
            if (ma[k] > z || (fabs(ma[k] - z) < eps && wz[k] < la)) la = wz[k];
            printf("%d\n", la);
        } else {
            m += 1;
            int x0,y0,x1,y1;
            scanf("%d%d%d%d", &x0, &y0, &x1, &y1);
            x0 = (x0 + la - 1) % 39989 + 1;
            x1 = (x1 + la - 1) % 39989 + 1;
            y0 = (y0 + la - 1) % 1000000000 + 1;
            y1 = (y1 + la - 1) % 1000000000 + 1;
            if (x0 > x1) {
                int t = x0;
                x0 = x1;x1 = t;
                t = y0;
                y0 = y1;y1 = t;
            }
            if (x0 == x1) {
                if (y1 > y0) y0 = y1;
                if (y0 > ma[x0]) {
                    ma[x0] = y0;
                    wz[x0] = m;
                }
            }
            insert(1, 1, 39989, x0, x1, line(x0, y0, x1, y1, m));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值