python主成分分析相关系数_主成分分析(PCA)

主成分分析(Principal Component Analysis,PCA)是一种常用的无监督学习方法

利用正交变换把由线性相关变量表示的观测数据 转换为 少数几个由线性无关变量表示的数据,线性无关的变量 称为 主成分

主成分的个数通常小于原始变量的个数,所以PCA属于降维方法

主要用于发现数据中的基本结构,即数据中变量之间的关系,是数据分析的有力工具,也用于其他机器学习方法的前处理

PCA属于多元统计分析的经典方法

1. 总体主成分分析

第一轴选取方差最大的轴 y1

主成分分析 的主要目的是降维,所以一般选择 k( k≪mk\ll

mk≪m)个主成分(线性无关变量)来代替m个原有变量(线性相关变量),使问题得以简化,并能保留原有变量的大部分信息(原有变量的方差)。

在实际问题中,不同变量可能有不同的量纲,直接求主成分有时会产生不合理的结果。

为了消除这个影响,常常对各个随机变量实施规范化,使其均值为0,方差为1。

主成分分析的结果可以用于其他机器学习方法的输入。

将样本点投影到以主成分为坐标轴的空间中,然后应用聚类算法,就可以对样本点进行聚类

定义:

假设 x\pmb xxxx 为 mmm 维随机变量,均值为 μ\muμ,协方差矩阵为 Σ\SigmaΣ

随机变量 x\pmb xxxx 到 mmm 维随机变量 y\pmb yyyy 的线性变换

yi=αiTx=∑k=1mαkixk,i=1,2,...,my_i = \alpha_i^T \pmb x = \sum\limits_{k=1}^m

\alpha_{ki}x_k, \quad i=1,2,...,myi=αiTxxx=k=1∑mαkixk,i=1,2,...,m

其中 αiT=(α1i,α2i,...,αmi)\alpha_i^T =

(\alpha_{1i},\alpha_{2i},...,\alpha_{mi})αiT=(α1i,α2i,...,αmi)

如果该线性变换满足以下条件,称之为总体主成分:

αiTαi=1,i=1,2,...,m\alpha_i^T\alpha_i = 1, i = 1,

2,...,mαiTαi=1,i=1,2,...,m

cov(yi,yj)=0(i≠j)cov (y_i,y_j) = 0(i \neq

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值