【论文写作】实验的描述——模型、实验结果、图表的描述

本文详述了深度学习论文中实验部分的撰写,包括模型描述、实验结果展示和图表解读。通过具体例子展示了不同方法的优越性,并提供了一套描述图表效果的通用模板。例如,对比描述了不同预训练方法在小数据集上的性能,指出数据量与模型性能的关系,以及可能存在的问题和未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验设置

模型描述

在这里插入图片描述

一体化的描述

Effectiveness. We first evaluate the effectiveness of SSLGuard**(我们首先要评估什么指标)**. Concretely(这个指标怎么评估,反映了什么), we check whether the model owner can extract the watermark from the watermarked encoders. Ideally(理想的结果是什么?), the watermark should be successfully extracted from the watermarked encoder F∗ and shadow encoder Fs, but not the clean encoder F. We use the generated key-tuple κ to measure the watermark rate (WR) for F, F∗, and Fs on three SSL algorithms. As

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学渣渣渣渣渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值