Introduction to Solid State Physics[1]
第 6 章 自由电子费米气
费米-狄拉克分布
-
- 化学势
,T=0K时,
为费米能
- 给定晶体,
由
确定。一般情况
,且三维晶体,
随T增加而略微减小
- 自由电子模型中
,n为金属传导电子(价电子)浓度,对其理解可结合紧束缚近似,由原子内层轨道展宽形成能带窄,与外层价电子轨道展宽的能带不交叠。由能带论
,将价电子能带在第一布里渊区展开分析,这样自由电子论在倒空间中得到以
为中心,半径
的费米球
金属比热容
- 温度T下,金属只有能量
附近,能量宽度
的电子才能有效激发
- 电子气比热容
- 金属热容由电子和声子共同贡献,
- 由于传导电子与刚性晶格周期势场、声子及传导电子之间的相互作用,热有效质量
与电子质量m之间存在一定偏差
电子平均自由程
-
-
- 弛豫时间
由声子散射和缺陷散射决定
- 电导率
- 声子倒逆散射
是低温下电阻率的主要原因
- 极低温下,高纯金属晶体中电子平均自由程可达1 cm量级
- 金属晶体中传导电子在周期性结构中自由传播
- 泡利不相容原理使得传导电子之间散射不频繁
霍尔系数金属导热性可以确定载流子浓度和类型
- 费米气热导率
- 纯金属中所有温度下电子对热导贡献均比声子大
- 非纯金属或无序合金中,电子与缺陷碰撞导致电子平均自由程减小,这时声子热导可与电子热导相比拟
- 维德曼-夫兰兹(Wiedemann-Franz)定律得到洛伦兹(Lorenz)常量
参考资料
[1] Introduction to Solid State Physics: C.基泰尔《固体物理导论》第8版