计算机视觉
Joker__Wa
这个作者很懒,什么都没留下…
展开
-
阅读YOLOv3论文的一些记录、问题、解答
YOLOv3论文链接: https://arxiv.org/abs/1804.02767问题:网络实际学习的是tx、ty、tw、tht_{x}、t_{y}、t_{w}、t_{h}tx、ty、tw、th这4个offsets,tx、tyt_{x}、t_{y}tx、ty是预测的坐标偏移值,tw、tht_{w}、t_{h}tw、th是预测的尺度缩放,为什么不让网络直接学习bx、by、bw、bhb_{x}、b{y}、b_{w}、b_{h}bx、by、bw、bh?YOLOv3一共产生原创 2020-11-10 21:33:23 · 926 阅读 · 0 评论 -
图像中 image[:,::-1,:]的含义详解
最近在看python源代码的时候对 image = image[:,::-1,:] 一行代码不太理解,通过查阅得知了这一行代码的含义,特此记录下来: 首先,这一行代码产生的效果是对原来的一张图片实现 翻转(flip) 的效果,效果图如下: 接下来详细解释一下这一行代码的含义(image是一个三维数组): 1. image[:,::-1,:]中的第一个冒号代表了图片的纵列,单独一个冒号指的是对图片的所有纵列进行操作。 2. image[:,::-1,:]中的 ::-1 的是表示从右向左进原创 2020-10-28 10:20:33 · 4092 阅读 · 1 评论 -
ResNet结构以及残差块详细分析
ResNet结构以及残差块详细分析ResNet结构如下残差块结构以及分析 输入特征矩阵以两个分支进入残差块,直线分支经过多个卷积层产生输出特征矩阵,**注意:**在直线残差块中,经过最后一个卷积层之后并不是立刻通过激活函数ReLU激活(残差块中除去最后一个卷积层,其他的卷积层都是产生输出特征矩阵之后立刻进行激活),而是要和shortcut分支传过来的特征矩阵相加之后再进行激活。在这里涉及到了矩阵的相加,那么就要求直线分支(主分支)和shortcut分支(旁分支)的输出特征矩阵的shape原创 2020-08-18 20:38:50 · 21250 阅读 · 0 评论 -
ReLU作为分段线性激活函数,如何在神经网络中引入非线性?
ReLU作为分段线性激活函数,如何在神经网络中引入非线性?前言:我们知道激活函数的作用就是为了为神经网络增加非线性因素,使其可以拟合任意的函数。那么relu在大于的时候就是线性函数,如果我们的输出值一直是在大于0的状态下,怎么可以拟合非线性函数呢?relu是非线性激活函数题主的疑问在于,为什么relu这种“看似线性”(分段线性)的激活函数所形成的网络,居然能够增加非线性的表达能力。解答:1、首先什么是线性的网络,如果把线性网络看成一个大的矩阵M。那么输入样本A和B,则会经过同样的线性变换MA,M转载 2020-08-15 15:49:48 · 2868 阅读 · 0 评论 -
行人重识别的大体介绍
行人重识别简介: 首先拿到原始的视频,从对视频中的行人进行检测,将行人图片裁剪出来,得到一系列的行人图片(图中的gallery),对于任意一张想要检索的图片,比如图中的Cam1,假设Cam1中的行人标号为A,在gallery中进行搜索,找到gallery中的所有的标号为A的人。行人重识别的定义: 行人重识别也称行人再识别,被广泛认为是一个图像检索的子问题,是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补当前..原创 2020-08-12 16:15:51 · 2593 阅读 · 0 评论 -
罗浩老师行人重识别课程记录
卷积核在图像处理领域的物理意义: 一个卷积核卷一次图像 就是在提取一副图片的特征,所以,卷积就是在提取特征。不同的卷积核卷积图像会得到图像的不同特征,一次卷积操作对应着一次特征提取CNN的平移不变性: CNN对于同一张图片及其平移后的版本,都能输出同样的结果感受野: 感受野指的是一个神经元与输入层连接神经元组成区域,卷积和池化操作都会改变感受野的大小卷积神经网络三特性: 1. 局部连接 底层神经元更注重局部细节并且局部神经元减少了参数量 2. 权值共享 可以使用一个卷积核对整副图像进..原创 2020-08-12 16:06:20 · 677 阅读 · 0 评论 -
Batch Normalization(BN)的简单介绍
Batch Normalization(BN)介绍BN目的: 令一批(batch)数据对应的feature map的每一个维度(每一个channel)满足均值为0,方差为1的分布规律,通过该方法能够加速网络的收敛并提升准确率。BN算法的步骤以及参数求解μ,σ 是在正向传播过程中统计得到γ,β 是在反向传播过程中训练得到使用BN算法应该注意的问题:1. 训练时要将traning参数设置为True,在验证时将trainning参数设置为False(因为训练时需要对每一批batch统计相原创 2020-08-09 20:34:16 · 487 阅读 · 0 评论 -
激活函数介绍
神经网络需要激活函数的原因: 数据的分布绝大多数的非线性的,而不加激活函数的神经网络的计算是线性的,引入激活函数,是为了在神经网络中加入非线性的因素,增强神经网络的学习能力,所以激活函数的最大特点就是非线性。为什么不加激活函数的网络的计算是线性的?单层感知机在上图中的单层感知机中,y的表达式即为线性的,右图中的直线由 w1x1+w2x2+b=0w_{1}x_{1}+w_{2}x_{2} + b = 0w1x1+w2x2+b=0 得到,可以看出单层的感知机只能进行线性的.原创 2020-08-09 20:29:51 · 856 阅读 · 0 评论 -
ResNet网络构建过程详细分析
ResNet网络的构建过程 构建ResNet网络是通过ResNet类进行的,ResNet类继承了Pytorch网络的基类:torch.nn.Module,然后重写了 _init_ 方法和 forward 方法,__init__方法用来定义一些参数,forward方法用来定义数据在层之间的流动顺序。 构建ResNet网络时,在函数中一般是调用torchvision.model中的resnet50()/resnet18()/resnet101()等函数完成的,调用resnet50()/resnet1.原创 2020-08-06 17:22:48 · 2222 阅读 · 0 评论