题目如下
答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
1.字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;
2.任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;
3.如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (<10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES,否则输出 NO。
输入样例:
8
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT Whatever
APAAATAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
条件一只需对字符串进行判断即可,没有难度。
条件二限制了格式,PAT、APATA、AAPATAA。。。。以此类推都是正确的,条件二应是产生条件三的前提。
前面说过条件三是在条件二的情况下产生的,因此PT的输出应为NO。
推条件三:
开始时a是等于c的(条件二),可看做aTATc,当P和T之间每加一个A时,T后面都要加一个a(设a为P前A的个数),当PT之间加了n个A(即PT之间n+1个A),T后的A的个数为a+na=a(n+1)。P前A的个数仍为a,即T后的A个数等于P、T之间A的个数乘P前A的个数。
代码思路:
1.判断是否只含有P、A、T三个字母,有别的直接false。
2.遍历string记录P和A和T的个数,A的个数大于0,P和T均为1,不符合的直接false。
3.判断P、T下标,P大于T的直接false。
4.通过下标计算三个区间A的个数进行判断,T后个数等于P前和PT之间相乘的返回true。
#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
bool judge(string str){
int result;
int numP=0,numT=0,numA=0;
int countP,countT;
for(int i=0;i<str.length();i++){
if(str[i]!='P'&&str[i]!='A'&&str[i]!='T'){
result = false;
break;
}
if(str[i]=='P'){
numP++;
}
if(str[i]=='T'){
numT++;
}
if(str[i]=='A'){
numA++;
}
}
if(numP!=1||numT!=1||numA<1){
result = false;
}else{
countP = str.find('P');
countT = str.find('T');
if(countP>countT){
result = false;
}else{
if((str.length()-countT-1)==countP*(countT-countP-1)){
result = true;
}
}
}
return result;
}
int main(){
int n;
cin >> n;
bool flag[n+1];
for(int i=0;i<n;i++){
string str;
cin >> str;
flag[i] = judge(str);
}
for(int i=0;i<n;i++){
if(flag[i]){
cout << "YES\n";
}else{
cout << "NO\n";
}
}
return 0;
}