时间序列预测
文章平均质量分 87
ㄣ知冷煖★
CSDN人工智能领域优质创作者、阿里云专家博主、腾讯云开发者内容共创官、百林哲教育专家、全国3D建模大赛国奖获得者、省奖若干、Kaggle竞赛银牌若干、BPAA算法大赛模型鉴赏师、在职算法工程师,计算机硕士。
展开
-
开启你的时间序列分析之旅:一步步教你学会HyperTS
HyperTS是一个开源的时间序列分析库,主要用于处理和分析时间序列数据。原创 2023-06-21 14:18:21 · 1370 阅读 · 0 评论 -
破解时间序列:移动平均法的综合指南
时间序列(英语:time series)是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。时间序列广泛应用于数理统计、信号处理、模式识别、计量经济学、数学金融、天气预报、地震预测、脑电图、控制工程、航空学、通信工程以及绝大多数涉及到时间数据测量的应用科学与工程学。(来源:维基百科)原创 2023-06-20 17:49:24 · 2644 阅读 · 0 评论 -
时间序列异常点检测算法(Smoothed z-score algorithm)
时间序列异常点处理!原创 2023-03-02 19:26:32 · 1655 阅读 · 0 评论 -
Crystal Ball—甲骨文水晶球风险管理软件(概念以及实战——中级案例篇)
从这里开始就进入中级案例啦。基础案例请看我的第一篇文章:Crystal Ball—甲骨文水晶球风险管理软件(概念以及实战——基础案例篇)原创 2022-11-03 16:58:12 · 7890 阅读 · 0 评论 -
BOX-COX变换介绍
通常情况下,我们拿到的数据并不是正态分布的,为了满足经典线性模型的正态性假设,常常需要使用1、指数变换2、对数转化3、倒数转换4、平方根后取倒数5、平方根后再取反正弦使其转换后的数据接近正态,Box-Cox变换可以使线性回归模型在满足线性、正态性、独立性以及方差齐性的同时,又不丢失信息。变换后有利于线性模型的拟合以及分析出特征的相关性。天又黑了,看起来要下雨的样子。...原创 2022-08-16 14:30:18 · 6854 阅读 · 0 评论 -
波士顿房价预测
对于波士顿房价数据集的预测实战# 预测 20 世纪 70 年代中期波士顿郊区房屋价格的中位数# 数据点比较少,只有 506 个,分为 404 个训练样本和 102 个测试样本# 输入数据的每个特征都有不同的取值范围。(train_data , train_targets) ,(test_data , test_targets) = boston_housing . load_data() # 查看训练数据输出:可以看到数据量较少,数据维度是13维的。............原创 2022-08-09 10:54:26 · 3952 阅读 · 0 评论 -
Prophet模型的简介以及案例分析
prophet是facebook开源的一个时间序列预测算法。1、简介:时间序列预测算法Prophet是Facebook团队开源的一个时间序列预测算法,该算法结合了时间序列分解以及机器学习算法,并且可以对存在缺失值和异常值的时间序列进行预测。2、原理:由于现实中,时间序列常常是由趋势项,季节项,节假日效应和突发事件以及残差项组成,所以Prophet算法采用了时间序列分解的方法,它把时间序列分为了这几个部分:........................原创 2022-06-30 13:49:40 · 15458 阅读 · 14 评论