matlab blob analysis,MATLAB 物体识别算法说明:vision.ForegroundDetector, vision.BlobAnalysis...

这篇博客介绍了MATLAB中用于物体识别的两种算法:vision.ForegroundDetector和vision.BlobAnalysis。vision.ForegroundDetector基于高斯混合模型,通过背景减法规则检测视频中的运动物体,其关键参数包括学习率、训练帧数等。而vision.BlobAnalysis则用于分析检测到的前景物体。博客详细解析了这些算法的工作原理和参数设置,帮助理解如何在MATLAB中实现物体识别。
摘要由CSDN通过智能技术生成

在官方示例中,Motion-Based Multiple Object Tracking和Using Kalman Filter for Object Tracking都使用了下面两个算法进行物体的识别

1、vision.ForegroundDetector

原理:The ForegroundDetector System object compares a color or grayscale video frame to a background model to determine whether individual pixels are part of the background or the foreground. It then computes a foreground mask. By using background subtraction, you can detect foreground objects in an image taken from a stationary camera.

将每一帧和一个背景帧进行对比,判断每个像素点是属于背景,还是属于罩子(罩子就是不属于背景的意思)。通过这种对比,就能识别出后面帧中运动的物体。适用范围:一个固定的摄像头所拍摄的视频。

算法:Gaussian mixture models (GMM).,呵呵,又是高斯。

使用方法见官方文档、示例。

参数,也是最重要的部分:

AdaptLearningRate,默认true,解释:

Enables the object to adapt the learning rate during the period specified by the NumTrainingFrames property. When you set this property to

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值