
前言
其实我们很早就在初中学过双曲线,那就是反比例函数,经过旋转变换去掉xy项后,就能把反比例函数变换成标准双曲线。
双曲线
双曲线的第一种定义和椭圆类似,到两个点的距离之差为常数,如图:

AB是两个定点,双曲线上的点C到AB的距离之差为常数,为了方便计算记|AC|-|BC|=2a。
另一边对称地有|BC|-|AC|=2a,完整的双曲线由两个部分组成。
同时这也是双曲线两个部分之间的最短距离,即x轴和双曲线组成的线段,叫做实轴。
A和B被称为两个焦点,和椭圆类似,记|AB|=2c为焦距。
接着我们计算双曲线方程:
对于x小于0的情况类似,这里不再重复计算。
可以看出计算过程和椭圆几乎完全一致,唯一的问题是现在a小于c,无法定义b。
我们令
所以2b也被称为虚轴长度,对应的2a是实轴长度。
而如果抛物线焦点在y轴上,则方程通过交换x和y变为:

离心率
复习之前椭圆中关于离心率的知识,推导过程完全相同,由:
变形为:
左边是双曲线右侧部分上的点到右焦点(c,0)的距离,右边括号内是到定直线
对于双曲线来说,离心率应该大于1,离心率越大则双曲线越接近直线:

到焦点的距离被称为焦半径,和椭圆一样,右焦半径为|a-ex|。
练习:计算左焦点对应的准线以及左焦半径。
渐近线
将双曲线方程改为:
得到两条直线,可以验证这两条直线是双曲线的渐近线。
渐近线的定义为曲线上的点在无限远处和直线的距离极限为0,但同时又不和曲线相交的直线。

渐近线和双曲线没有交点,和渐近线平行的直线和双曲线只有一个交点。
其他直线一般通过联立方程求解根的数量,判断交点情况,此方法适用于所有曲线。
如果一双曲线的实轴和虚轴是另一双曲线的虚轴和实轴,则称为共轭双曲线,它们有相同的渐近线,且焦距相同四个焦点共圆。
探索:共轭双曲线有哪些特殊之处?
练习:求焦点在y轴上的双曲线的渐近线。