调用深度学习网络模型使用(新人向)

新人避坑(刚开始接触医学图像分割)

在刚开始跑网络分割模型的时候总是一个一个源码去跑,这就导致需要自己匹配代码的数据集格式,需要在图像预处理上花费较多时间。最好的方法是在源码的基础上将网络模型提取出来,在一个基本的图像分割网络进行调用,下面以U-net网络源码调用RegSeg为例。

  1. 参考代码:Pytorch-UNet/unet_model.py at master · milesial/Pytorch-UNet · GitHub 

                          https://github.com/RolandGao/RegSeg

      2. 看U-net的网络结构文件和RegSeg的网络文件model.py

 (在这之间需要注意的是RegSeg它的model.py在python里有同名的函数,所以在放入unet的时候需要改名比如RegSeg_model.py,以及看清楚model里面需要的其它模块需要一起复制过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值