python箱线图标注单位_Python数据可视化:Matplotlib 直方图、箱线图、条形图、热图、折线图、散点图。。。...

本文通过Python的Matplotlib库展示了数据可视化的各种图表,包括直方图、箱线图、条形图、热图、折线图、散点图等,帮助理解数据分布和关系。
摘要由CSDN通过智能技术生成

Python数据可视化:Matplotlib 直方图、箱线图、条形图、热图、折线图、散点图。。。

使用Python进行数据分析,数据的可视化是数据分析结果最好的展示方式,这里从Analytic Vidhya中找到的相关数据,进行一系列图形的展示,从中得到更多的经验。

强烈推荐:Analytic Vidhya

Python数据可视化库

Matplotlib:其能够支持所有的2D作图和部分3D作图。能通过交互环境做出印刷质量的图像。

Seaborn:基于Matplotlib,seaborn提供许多功能,比如:内置主题、颜色调色板、函数和提供可视化单变量、双变量、线性回归的工具。其能帮助我们构建复杂的可视化。

数据集

作图

# -*- coding:UTF-8 -*-

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import numpy as np

# 0、导入数据集

df = pd.read_excel('first.xlsx', 'Sheet1')

# 1、直方图

fig = plt.figure()

ax = fig.add_subplot(111)

ax.hist(df['Age'], bins=7)

plt.title('Age distribution')

plt.xlabel('Age')

plt.ylabel('Employee')

plt.show()

# 2、箱线图

fig = plt.figure()

ax = fig.add_subplot(111)

ax.boxplot(df['Age'])

plt.show()

# 3、小提琴图

sns.violinplot(df['Age'], df['Gender'])

sns.despine()

plt.show()

# 4、条形图

var = df.groupby('Gender').Sales.sum()

fig = plt.figure()

ax1 = fig.add_subplot(111)

ax1.set_xlabel('Gender')

ax1.set_ylabel('Sum of Sales')

ax1.set_title('Gender wise Sum of Sales')

var.plot(kind='bar')

plt.show()

# 5、折线图

var = df.groupby('BMI').Sales.sum()

fig = plt.figure()

ax = fig.add_subplot(111)

ax.set_xlabel('BMI')

ax.set_ylabel('Sum of Sales')

ax.set_title('BMI wise Sum of Sales')

var.plot(kind='line')

plt.show()

# 6、堆积柱形图

var = df.groupby(['BMI', 'Gender']).Sales.sum()

var.unstack().plot(kind='bar', stacked=True, color=['red', 'blue'])

plt.show()

# 7、散点图

fig = plt.figure()

ax = fig.add_subplot(111)

ax.scatter(df['Age'], df['Sales'])

plt.show()

# 8、气泡图

fig = plt.figure()

ax = fig.add_subplot(111)

ax.scatter(df['Age'], df['Sales'], s=df['Income'])  # 第三个变量表明根据收入气泡的大小

plt.show()

# 9、饼图

var = df.groupby(['Gender']).sum().stack()

temp = var.unstack()

type(temp)

x_list = temp['Sales']

label_list = temp.index

plt.axis('equal')

plt.pie(x_list, labels=label_list, autopct='%1.1f%%')

plt.title('expense')

plt.show()

# 10、热图

data = np.random.rand(4, 2)

rows = list('1234')

columns = list('MF')

fig, ax = plt.subplots()

ax.pcolor(data, cmap=plt.cm.Reds, edgecolor='k')

ax.set_xticks(np.arange(0, 2)+0.5)

ax.set_yticks(np.arange(0, 4)+0.5)

ax.xaxis.tick_bottom()

ax.yaxis.tick_left()

ax.set_xticklabels(columns, minor=False, fontsize=20)

ax.set_yticklabels(rows, minor=False, fontsize=20)

plt.show()

完 谢谢观看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值