很好的一本书,700pages,而且有程序,哈哈
值得100把
Numerical Methods in Finance
and Economics
A MATLAB-Based Introduction
Second Edition
Paolo Brandimarte
Politecnico di Torino
Torino, Italy
@XEliciENCE
Part I Background
Contents
1 Motivation
1.1 Need for numerical methods
1.2 Need for numerical computing environments:
why MATLAB?
1.3 Need for theory
For further reading
References
2 Financial Theory
2.1 Modeling uncertainty
2.2 Basic financial assets and related issues
2.2.1 Bonds
2.2.2 Stocks
xvii
xxiii
3
4
9
13
20
21
23
25
30
30
31
Vii
viii CONTENTS
2.2.3 Derivatives
2.2.4
Fixed-income securities: analysis and portfolio
immunization
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5 Critique
2.4.1 Utility theory
2.4.2 Mean-variance portfolio Optimization
2.4.3 MATLAB functions to deal with meanvariance
portfolio optimization
2.4.4 Critical remarks
2.4.5 Alternative risk measures: Value at Risk
Modeling the dynamics of asset prices
2.5.1
2.5.2 Standard Wiener process
2.5.3 Stochastic integrals and stochastic
2.5.4 Ito’s lemma
2.5.5 Generalizations
2.6 Derivatives pricing
2.6.1
2.6.2 Black-Scholes model
2.6.3 Risk-neutral expectation and Feynman-
KaE formula
2.6.4 Black-Scholes model in MATLAB
2.6.5 A few remarks o n Black-Scholes formula
2.6.6 Pricing American options
Introduction to exotic and path-dependent options
2.7.1 Barrier options
2.7.2 Asian options
2.7.3 Lookback options
Asset pricing, portfolio optimization, and
risk management
2.3
Basic theory of interest rates: compounding
and present value
Basic pricing of fixed-income securities
Interest rate sensitivity and bond portfolio
immunization
MATLAB functions to deal with fixedincome
securities
2.4 Stock portfolio optimization
and quantile- based measures
From discrete t o continuous time
2.5
diflerential equations
Simple binomial model f o r option pricing
2.7
33
37
42
42
49
57
60
64
65
66
73
74
81
83
88
88
91
93
96
100
102
105
108
111
113
116
117
118
119
123
123
CONTENTS ix
2.8 An outlook on interest-rate derivatives
2.8.1 Modeling interest-rate dynamics
2.8.2
For further reading
References
Incomplete markets and the market price
of risk
Part 11 Numerical Methods
3 Basics of Numerical Analysis
3.1 Nature of numerical computation
3.1.1 Number representation, rounding, and
3.1.2 Error propagation, conditioning, and
3.1.3
Solving systems of linear equations 145
3.2.1 Vector and matrix norms 146
3.2.2
3.2.3
3.2.4 Tridiagonal matrices
3.2.5
truncation
instability 141
Order of convergence and computational
complexity 143
3.2
Condition number for a matrix 149
Direct methods for solving systems of
linear equations
Iterative methods for solving systems of
linear equations
3.3.1 Ad hoc approximation
3.3.2 Elementary polynomial interpolation
3.3.3 Interpolation by cubic splines
3.3.4
3.3 Function approximation and interpolation
Theory of function approximation by least
squares
3.4 Solving non-linear equations
3.4.1 Bisection method
3.4.2 Newton’s method
3.4.3 Optimization- based solution of non-linear
equations
3.4.4 Putting two things together: solving
a functional equation by a collocation
method
124
126
127
130
131
137
138
138
154
159
160
173
177
183
1 79
188
191
192
195
198
204
x CONTENTS
3.4.5 Homotopy continuation methods 204
For further reading 206
References 207
4 Numerical Integration: Deterministic and Monte Carlo
Methods
4.1 Deterministic quadrature
4.1.1 Classical interpolatory formulas
4.1.2 Gaussian quadrature
4.1.3 Extensions and product rules
4.1.4 Numerical integration in MATLAB
4.2 Monte Carlo integration
4.3 Generating pseudorandom variates
4.3.1 Generating pseudorandom numbers
4.3.2 Inverse transform method
4.3.3 Acceptance-rejection method
4.3.4
Setting the number of replications
4.5.1 Antithetic sampling
4.5.2 Common random numbers
4.5.3 Control variates
4.5.4 Variance reduction by conditioning
4.5.5 Stratified sampling
4.5.6 Importance sampling
4.6 Quasi-Monte Carlo simulation
4.6.1 Generating Halton low-discrepancy
sequences
4.6.2 Generating Sobol low-discrepancy
sequences
For further reading
References
Generating normal variates by the polar
approach
4.4
4.5 Variance reduction techniques
5 Finite Diflerence Methods for Partial Digerential
Equations
5.1 Introduction and classification of PDEs
5.2 Numerical solution by finite diflerence methods
5.2.1 Bad example of a finite diflerence scheme 295
209
21 1
21 2
214
21 9
220
221
225
226
230
233
235
24 0
244
244
251
252
255
260
261
267
269
281
286
287
289
290
293
CONTENTS xi
5.2.2
Explicit and implicit methods for the heat
equation
5.3.1
5.3.2
5.3.3
5.4 Solving the bidimensional heat equation
5.5 Convergence, consistency, and stability
For further reading
References
Instability in a finite diflerence scheme
5.3
Solving the heat equation by an explicit
method
Solving the heat equation by a fully
implicit method
Solving the heat equation by the Crank-
Nicolson method
297
303
304
309
31 3
320
314
324
324
6 Convex Optimization 327
6.1 Classification of optimization problems 328
6.1.1 Finite- us. infinite-dimensional problems 328
6.1.2 Unconstrained us. constrained problems 333
6.1.3 Convex us. non-convex problems 333
6.1.4 Linear us. non-linear problems 335
6.1.5 Continuous us. discrete problems 337
6.1.6 Deterministic us. stochastic problems 337
6.2.1 Steepest descent method 339
6.2.2 The subgradient method 34 0
6.2.3 Newton and the trust region methods 34 1
method and simplex search 342
6.3 Methods for constrained optimization 34 6
6.3.1 Penalty function approach 34 6
6.3.3 Duality theory 357
6.2 Numerical methods for unconstrained optimization 338
6.2.4 No-derivatives algorithms: quasi-Newton
6.2.5 Unconstrained optimization in MATLAB 343
6.3.2 Kuhn-Tucker conditions 351
6.3.4 Kelley 's cutting plane algorithm 363
6.3.5 Active set method 365
6.4 Linear programming 366
6.4.1 Geometric and algebraic features of linear
programming 368
6.4.2 Simplex method 370
xi; CONTENTS
6.4.3 Duality in linear programming
6.4.4 Interior point methods
6.5.1 Linear programming in MATLAB
6.5.2 A trivial LP model for bond portfolio
management
6.5.3 Using quadratic programming to trace
evgicient portfolio frontier
6.5.4 Non-linear programming in MATLAB
6.5 Constrained optimization in MATLAB
6.6 Integrating simulation and optimization
S6.1 Elements of convex analysis
S6.1.1 Convexity in optimization
S6.1.2 Convex polyhedra and polytopes
For further reading
References
Part 111 Pricing Equity Options
7 Option Pricing by Binomial and Thnomial Lattices
7.1 Pricing by binomial lattices
7.1.1 Calibrating a binomial lattice
7.1.2
7.1.3
Pricing American options by binomial lattices
Putting two things together: pricing a
pay-later option
An improved implementation of binomial
lattices
7.2
372
375
377
378
380
383
385
387
389
389
393
396
397
4 01
4 02
4 03
410
411
414
7.3 Pricing bidimensional options by binomial lattices 41 7
7.4 Pricing by trinomial lattices 422
7.5 Summary 425
For further reading 426
References 426
8 Option Pricing by Monte Carlo Methods 429
8.1 Path generation 430
8.1.2 Simulating hedging strategies 435
8.1.3 Brownian bridge 439
8.2 Pricing an exchange option 443
8.1.1 Simulating geometric Brownian motion 431
CONTENTS xiii
8.3 Pricing a down-and-out put option
8.3.1 Crude Monte Carlo
8.3.2 Conditional Monte Carlo
8.3.3 Importance sampling
Pricing an arithmetic average Asian option
8.4.1 Control variates
8.4.2 Using Halton sequences
Estimating Greeks by Monte Carlo sampling
For further reading
References
8.4
8.5
9 Option Pricing by Finite Diflerence Methods
9.1
9.2
Applying finite diflerence methods to the Black-
Scholes equation
Pricing a vanilla European option by an explicit
method
9.2.1 Financial interpretation of the instability
of the explicit method 481
Pricing a vanilla European option by a fully
implicit method
Pricing a barrier option by the Crank-Nicolson
method
For further reading
References
9.3
9.4
9.5 Dealing with American options
Part I V Advanced Optimization Models and Methods
10 Dynamic Programming
10-1 The shortest path problem
10.2 Sequential decision processes
10.2.1 The optimality principle and solving the
functional equation
10.3 Solving stochastic decision problems by dynamic
programming
10.4 American option pricing by Monte Carlo
simulation
10.4.1 A MATLAB implementation of the least
squares approach
44 6
44 6
44 7
450
4 54
4 55
458
468
4 72
4 73
4 75
4 75
4 78
482
485
486
4 91
4 91
4 95
496
500
501
504
51 1
51 7
xiv CONTENTS
10.4.2 Some remarks and alternative approaches
For further reading
References
11 Linear Stochastic Programming Models with Recourse
11.1 Linear stochastic programming models
11.2 Multistage stochastic programming models for
portfolio management
11.2.1 Split-variable model formulation
11.2.2 Compact model formulation
11.2.3 Asset and liability management with
11.3 Scenario generation for multistage stochastic
programming
11.3.1 Sampling for scenario tree generation
11.3.2 Arbitrage free scenario generation
1 1.4 L-shaped method for two-stage linear stochastic
programming
11.5 A comparison with dynamic programming
For further reading
References
transaction costs
12 Non- Convex Optimization
12.1 Mixed-integer programming models
12.1.1 Modeling with logical variables
12.1.2 Mixed-integer portfolio optimization
12.2 Fixed-mix model based on global optimization
12.3 Branch and bound methods for non-convex
optimization
12.3.1 LP-based branch and bound for MILP
models
12.4 Heuristic methods for non-convex optimization
For further reading
References
models
51 9
521
522
525
526
530
532
54 0
544
54 6
54 7
550
555
558
559
560
563
564
565
571
576
578
584
591
597
598
CONTENTS xv
Part V Appendices
Appendix A Introduction to MATLAB Programming 603
A.l MATLAB environment 603
A.3 MATLAB programming 61 6
Appendix B Refresher on Probability Theory and Statistics 623
A.2 MATLAB graphics 614
B.l Sample space, events, and probability
B.2 Random variables, expectation, and variance
B.2.1 Common continuous random variables
B.3 Jointly distributed random variables
B.4 Independence, covariance, and conditional
expectation
B.5 Parameter estimation
B. 6 Linear regression
For further reading
References
Appendix C Introduction to AMPL
C. 1 Running optimization models in AMPL
C.2 Mean variance eficient portfolios in AMPL
C.3 The knapsack model in AMPL
C.4 Cash pow matching
For further reading
References
Index
623
625
628
632
633
637
642
64 5
64 5
64 7
64 8
64 9
652
655
655
656
657
This Page Intentionally Left Blank
268637.pdf
(32.92 MB, 需要: 100 个论坛币)
2008-11-20 14:50:00 上传
Numerical Methods in Finance
需要: 100 个论坛币