环境搭建-CentOS7下Nvidia Docker容器基于TensorFlow1.15测试GPU

1. TensorFlow简介

TensorFlow 在新款 NVIDIA Pascal GPU 上的运行速度可提升高达 50%,并且能够顺利跨 GPU 进行扩展。 如今,训练模型的时间可以从几天缩短到几小时

TensorFlow 使用优化的 C++ 和 NVIDIA® CUDA® 工具包编写,使模型能够在训练和推理时在 GPU 上运行,从而大幅提速

TensorFlow GPU 支持需要多个驱动和库。为简化安装并避免库冲突,建议利用 GPU 支持的 TensorFlow Docker 镜像。此设置仅需要 NVIDIA GPU 驱动并且安装 NVIDIA Docker。用户可以从预配置了预训练模型和 TensorFlow 库支持的 NGC (NVIDIA GPU Cloud) 中提取容器

CPU擅长逻辑控制、串行计算,而GPU擅长高强度计算、并行计算。CUDA是NVIDIA推出用于自家GPU的并行计算框架,cuDNN & tensorflow是一系列机器学习,深度学习库,用于训练机器学习、深度学习模型

2. 依赖环境准备 

选取centos7.3作为基础操作系统镜像,选取适配驱动:Nvidia

GPU部署预装机器

深度学习框架:cuda、cudnn、tensorflow

由于cuda、cudnn、tensorflow等机器学习、深度学习框架,依赖python3,需要在centos7.3操作系统中集成python3

3. 测试环境

Server OS:Centos7
Linux kernel:Linux 3.10.0 x86_64
Docker Version:1.13.1
Docker Image:nvcr.io/nvidia/tensorflow:
23.03-tf1-py3 (V1.15版本)
cpu cores:2

Docker OS:Ubuntu 20.04.5 LTS
Docker Compose Version:v2.20.2
Nvidia GPU Version:NVIDIA-SMI 470.161.03
GPU:A10-2Q
CUDA Version: 12.1
TensorFlow Version:1.15.1
python Version:3.8.10

查看cpu内核数

cat /proc/cpuinfo |grep 'cpu cores'|uniq

4. CentOS7安装docker详细教程

当基于nvidia gpu开发的docker镜像在实际部署时,需要先安装nvidia docker。安装nvidia docker前需要先安装原生docker compose


安装docker
1. Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验证你的CentOS 版本是否支持 Docker 。

通过 uname -r 命令查看你当前的内核版本

uname -r

[root@gputest ~]# uname -a
Linux gputest 3.10.0-1160.90.1.el7.x86_64 #1 SMP Thu May 4 15:21:22 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

[root@gputest ~]# uname -r
3.10.0-1160.90.1.el7.x86_64

2. 使用 root 权限登录 Centos 确保 yum 包更新到最新

sudo yum update

3. 卸载旧版本(如果安装过旧版本的话)

yum remove docker 
docker-client 
docker-client-latest 
docker-common 
docker-latest 
docker-latest-logrotate 
docker-logrotate 
docker-selinux 
docker-engine-selinux 
docker-engine

4. 安装需要的软件包, yum-util 提供yum-config-manager功能,另外两个是devicemapper驱动依赖的

yum install -y yum-utils device-mapper-persistent-data lvm2

5. 设置yum源

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo



6. 可以查看所有仓库中所有docker版本,并选择特定版本安装

yum list docker-ce --showduplicates | sort -r

7. 安装docker,版本号自选

yum install docker-ce-17.12.0.ce

8. 启动并加入开机启动

systemctl start docker
systemctl status docker
systemctl enable docker

9. 验证安装是否成功(有client和service两部分表示docker安装启动都成功了)

docker version

5. CentOS7安装Docker Compose

一个使用Docker容器的应用,通常由多个容器组成。使用Docker Compose不再需要使用shell脚本来启动容器。Compose 通过一个配置文件来管理多个Docker容器,在配置文件中,所有的容器通过services来定义,然后使用docker-compose脚本来启动,停止和重启应用,和应用中的服务以及所有依赖服务的容器,非常适合组合使用多个容器进行开发的场景

 1. 卸载旧版本Docker Compose
如果之前安装过Docker Compose的旧版本,可以先卸载它们:

sudo rm /usr/local/bin/docker-compose

2. 下载Docker Compose最新版
从Docker官方网站下载Docker Compose最新版本的二进制文件:

sudo curl -L "https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

3. 授权Docker Compose二进制文
授予Docker Compose二进制文件执行权限

sudo chmod +x /usr/local/bin/docker-compose

4. 检查Docker Compose版本
docker-compose --version

安装版本为
Docker Compose version v2.20.2

6. CentOS7安装NVIDIA-Docker

nvidia-docker

依赖条件
如果使用的 Tensorflow 版本大于 1.4.0,要求 CUDA 9.0 以上版本

基于docker的测试环境的建立

测试环境基于docker构建,需要Nvidia GPU驱动的支持(不需要安装CUDA),安装好GPU驱动和docker以后,下载最新的包含tensorflow,CUDA,cudnn等的image,然后就可以运行tf_cnn_benchmark了

1. 下载nvidia-docker安装包

$ wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm

2. 安装nvidia-docker

$ rpm -ivh nvidia-docker-1.0.1-1.x86_64.rpm

3. 启动 nvidia-docker 服务
$ sudo systemctl restart nvidia-docker

4. 执行以下命令,若结果显示 active(running) 则说明启动成功

$ systemctl status nvidia-docker.service

Active: active (running) since Fri 2023-07-21 11:15:45 CST; 1min ago
5. 使用 nvidia-docker查看 GPU 信息

 $ nvidia-docker run --rm nvidia/cuda nvidia-smi

7. 基于NVIDIA-Docker安装Tensorflow1.15版本

4.1 查看下载的镜像

[root@gputest gpu]# docker image ls  

4.2 下载tensorflow v1.15.5版本的镜像

官网地址:TensorFlow | NVIDIA NGC

[root@gputest gpu]# docker pull nvcr.io/nvidia/tensorflow:23.03-tf1-py3  大概1.5小时

安装testflow1.0版本(向下兼容)

4.3 再次查看下载的镜像

[root@gputest gpu]# docker image ls

image id = fc14c7fdf361为上述安装的tensorflow1.15版本容器

4.4 进入tensorflow容器

nvidia-docker run --rm -it nvcr.io/nvidia/tensorflow:18.03-py3  (清除镜像)

[root@gputest ~]# nvidia-docker run -it nvcr.io/nvidia/tensorflow:23.03-tf1-py3

格式:nvidia-docker run -it {REPOSITORY容器名称:TAG号} 

root@818d19092cdc:/gpu# pip list|grep tensor
jupyter-tensorboard           0.2.0
tensorboard                   1.15.0
tensorflow                    1.15.5+nv23.3
tensorflow-estimator          1.15.1
tensorrt                      8.5.3.1

测试脚本:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import tensorflow as tf
hello = tf.constant('--------Hello, TensorFlow!----------')
sess = tf.Session()
sess.run(hello)

输出日志太多,可以看到上面的图有I W 分别代表info warning

设置TF_CPP_MIN_LOG_LEVEL的日志级别

机器学习,每次运行代码都会出一堆Successfully opened dynamic library,还有显示各种提示,还有显卡计算信息,于是上网查了很多方法,都不行,最后发现是犯了个错。。如下,要写在import tensorflow前面

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf

只要写在前面就行了。。。顺序不能错 不能在 import tensorflow as tf 后面

查看云容器的操作系统

在container OS中使用命令cat /proc/driver/nvidia/version或nvcc --version可正常显示显卡驱动版本及CUDA版本 

 

8. 配置git

1. 在本机生成公私钥ssh-keygen -t rsa -b 4096 -C "xx@xx.com"  默认生成的公私钥 ~/.ssh/

id_rsa.pub

id_rsa

-b 4096:b是bit的缩写

-b 指定密钥长度。对于RSA密钥,最小要求768位,默认是2048位。命令中的4096指的是RSA密钥长度为4096位。

DSA密钥必须恰好是1024位(FIPS 186-2 标准的要求)

Generating public/private rsa key pair.
Enter file in which to save the key (/Users/qa/.ssh/id_rsa): yes
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in yes.
Your public key has been saved in yes.pub.
The key fingerprint is:
SHA256:MGbV/xx/xx lishan12@xx.com
The key's randomart image is:
+---[RSA 4096]----+
|        ...OBB=Eo|
|       . .O+oO=o=|
|      = .o*+B *o.|
|     o o o+B =.. |
|        S.+o .   |
|        .   o    |
|         .   .   |
|          . .    |
|           .     |
+----[SHA256]-----+

2. 配置登录git的username email。为公司给你分配的用户名 密码

第一步:

git config --global user.name 'username'
git config --global user.email 'username@xx.com'

第二步:设置永久保存
git config --global credential.helper store 复制代码
第三步:手动输入一次用户名和密码,GIT会自动保存密码,下次无须再次输入
git pull

3. 初始化仓库  git init

4. 拉取代码 git clone git@gitlab.xx.com:xx/xx.git
Cloning into 'xx-xx'...
git@gitlab.xx.com's password:
Permission denied, please try again.
git@gitlab.xx.com's password:

遇到的问题:没有出username  和 password成对的输入项 ,而是出了password输入项 

都不知道密码是啥,跟登录git库的密码不一样。

然后使用http的方式,报一个错误:

use:~/ecox # git clone https://vcs.in.ww-it.cn/ecox/ecox.git

正克隆到 'ecox'...

fatal: unable to access 'https://vcs.in.ww-it.cn/ecox/ecox.git/': SSL certificate problem: unable to get local issuer certificate

提示SSL证书错误。发现说这个错误并不重要是系统证书的问题,系统判断到这个行为会造成不良影响,所以进行了阻止,只要设置跳过SSL证书验证就可以了,那么用命令 :

git config --global http.sslVerify false

9. 下载Benchmarks源码

从 TensorFlow 的 Github 仓库上下载 TensorFlow Benchmarks,可以通过以下命令来下载

https://github.com/tensorflow/benchmarks

我的 - settings -SSH and GPG Keys 添加公钥id_rsa.pub

拉取代码 git clone git@github.com:tensorflow/benchmarks.git

git同步远程分支到本地,拉取tensorflow对应版本的分支

git fetch origin 远程分支名xxx:本地分支名xxx
使用这种方式会在本地仓库新建分支xxx,但是并不会自动切换到新建的分支xxx,需要手动checkout,当然了远程分支xxx的代码也拉取到了本地分支xxx中。采用这种方法建立的本地分支不会和远程分支建立映射关系

root@818d19092cdc:/gpu/benchmarks# git checkout -b tf1.15 origin/cnn_tf_v1.15_compatible

 10. 运行不同模型

root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks# pwd
/gpu/benchmarks/scripts/tf_cnn_benchmarks
root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks# python3 tf_cnn_benchmarks.py

真实操作:

[root@gputest ~]# docker ps

进入CONTAINER ID  containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

新开窗口 

[root@gputest ~]# nvidia-smi -l 3 

该命令将3秒钟输出一次GPU的状态和性能,可以通过查看输出结果来得出GPU的性能指标

一、resnet50模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=resnet50 --variable_update=parameter_server

Running warm up
2023-07-21 09:50:55.398126: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcublas.so.12
2023-07-21 09:50:55.533068: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudnn.so.8
Done warm up
Step    Img/sec    total_loss
1    images/sec: 10.1 +/- 0.0 (jitter = 0.0)    7.695
10    images/sec: 10.7 +/- 0.1 (jitter = 0.1)    8.022
20    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    7.269
30    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    7.889
40    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    8.842
50    images/sec: 10.6 +/- 0.1 (jitter = 0.2)    6.973
60    images/sec: 10.6 +/- 0.1 (jitter = 0.2)    8.124
70    images/sec: 10.6 +/- 0.0 (jitter = 0.2)    7.644
80    images/sec: 10.6 +/- 0.0 (jitter = 0.2)    7.866
90    images/sec: 10.6 +/- 0.0 (jitter = 0.3)    7.687
100    images/sec: 10.6 +/- 0.0 (jitter = 0.3)    8.779
----------------------------------------------------------------
total images/sec: 10.63

二、vgg16模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=vgg16 --variable_update=parameter_server

由于阿里云服务器申请的是2个G显存,所以只能跑size=1 2 和 4 ,超出会吐核

已放弃(吐核)--linux 已放弃(吐核) (core dumped) 问题分析

出现这种问题一般是下面这几种情况:

1.内存越界

2.使用了非线程安全的函数

3.全局数据未加锁保护

4.非法指针

5.堆栈溢出

也就是需要检查访问的内存、资源。

可以使用 strace 命令来进行分析

在程序的运行命令前加上 strace,在程序出现:已放弃(吐核),终止运行后,就可以通过 strace 打印在控制台的跟踪信息进行分析和定位问题

方法2:docker启动普通镜像的Tensorflow

$ docker pull tensorflow/tensorflow:1.8.0-gpu-py3
$ docker tag tensorflow/tensorflow:1.8.0-gpu-py3 tensorflow:1.8.0-gpu

# nvidia-docker run -it -p 8888:8888 tensorflow:1.8.0-gpu
$ nvidia-docker run -it -p 8033:8033 tensorflow:1.8.0-gpu

浏览器进入指定 URL(见启动终端回显) 就可以利用 IPython Notebook 使用 tensorflow

评测指标

  • 训练时间:在指定数据集上训练模型达到指定精度目标所需的时间

  • 吞吐:单位时间内训练的样本数

  • 加速效率:加速比/设备数*100%。其中,加速比定义为多设备吞吐数较单设备的倍数

  • 成本:在指定数据集上训练模型达到指定精度目标所需的价格

  • 功耗:在指定数据集上训练模型达到指定精度目标所需的功耗

在初版评测指标设计中,我们重点关注训练时间、吞吐和加速效率三项

11. 保存镜像的修改

执行以下命令,保存TensorFlow镜像的修改

docker commit   -m "commit docker" CONTAINER_ID  nvcr.io/nvidia/tensorflow:18.03-py3
# CONTAINER_ID可通过docker ps命令查看。

[root@gputest ~]# docker commit -m "commit docker" 818d19092cdc nvcr.io/nvidia/tensorflow:23.03-tf1-py3
sha256:fc14c7fdf361308817161d5d0cc018832575e7f2def99fe49876d2a41391c52c

 查看docker进程

[root@gputest ~]# docker ps

进入CONTAINER ID  containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

12. TensorFlow支持的所有参数

参数名称

描述

备注

--help

查看帮助信息

--backend

使用的框架名称,如TensorFlow,PyTorch等,必须指定

当前只支持TensorFlow,后续会增加对PyTorch的支持

--model

使用的模型名称,如alexnet、resnet50等,必须指定

请查阅所有支持的模型

--batch_size

batch size大小

默认值为32

--num_epochs

epoch的数量

默认值为1

--num_gpus

使用的GPU数量。设置为0时,仅使用CPU。

  • 在单机多卡模式下,指定每台机器使用的GPU数量;

  • 在multi-worker模式下,指定每个worker使用的GPU数量

--data_dir

输入数据的目录,对于CV任务,当前仅支持ImageNet数据集;如果没有指定,表明使用合成数据

--do_train

执行训练过程

这三个选项必须指定其中的至少一个,可以同时指定多个选项。

--do_eval

执行evaluation过程

--do_predict

执行预测过程

--data_format

使用的数据格式,NCHW或NHWC,默认为NCHW。

  • 对于CPU设备,建议使用NHWC格式

  • 对于GPU设备,建议使用NCHW格式

--optimizer

所使用的优化器,当前支持SGD、Adam和Momentum,默认为SGD

--init_learning_rate

使用的初始learning rate的值

--num_epochs_per_decay

learning rate decay的epoch间隔

如果设置,这两项必须同时指定

--learning_rate_decay_factor

每次learning rate执行decay的因子

--minimum_learning_rate

最小的learning rate值

如果设置,需要同时指定面的两项

--momentum

momentum参数的值

用于设置momentum optimizer

--adam_beta1

adam_beta1参数的值

用于设置Adam

--adam_beta2

adam_beta2参数的值

--adam_epsilon

adam_epsilon参数的值

--use_fp16

是否设置tensor的数据类型为float16

--fp16_vars

是否将变量的数据类型设置为float16。如果没有设置,变量存储为float32类型,并在使用时转换为fp16格式。

建议:不要设置

必须同时设置--use_fp16

--all_reduce_spec

使用的AllReduce方式

--save_checkpoints_steps

间隔多少step存储一次checkpoint

--max_chkpts_to_keep

保存的checkpoint的最大数量

--ip_list

集群中所有机器的IP地址,以逗号分隔

用于多机分布式训练

--job_name

任务名称,如‘ps'、’worker‘

--job_index

任务的索引,如0,1等

--model_dir

checkpoint的存储目录

--init_checkpoint

初始模型checkpoint的路径,用于在训练前加载该checkpoint,进行finetune等

--vocab_file

vocabulary文件

用于NLP

--max_seq_length

输入训练的最大长度

用于NLP

--param_set

创建和训练模型时使用的参数集。

用于Transformer

--blue_source

包含text translate的源文件,用于计算BLEU分数

--blue_ref

包含text translate的源文件,用于计算BLEU分数

--task_name

任务的名称,如MRPC,CoLA等

用于Bert

--do_lower_case

是否为输入文本使用小写

--train_file

训练使用的SQuAD文件,如train-v1.1.json

用于Bert模型,运行SQuAD, --run_squad必须指定

--predict_file

预测所使用的SQuAD文件,如dev-v1.1.json或test-v1.1.json

--doc_stride

当将长文档切分为块时,块之间取的间距大小

--max_query_length

问题包含的最大token数。当问题长度超过该值时,问题将被截断到这一长度。

--n_best_size

nbest_predictions.json输出文件中生成的n-best预测的总数

--max_answer_length

生成的回答的最大长度

--version_2_with_negative

如果为True,表明SQuAD样本中含有没有答案(answer)的问题

--run_squad

如果为True,运行SQUAD任务,否则,运行sequence (sequence-pair)分类任务

13. GPU机器学习调研tensorflow

1. 如何在tensorflow中指定使用GPU资源

在配置好GPU环境的TensorFlow中 ,如果操作没有明确地指定运行设备,那么TensorFlow会优先选择GPU。在默认情况下,TensorFlow只会将运算优先放到/gpu:0上。如果需要将某些运算放到不同的GPU或者CPU上,就需要通过tf.device来手工指定

import tensorflow as tf

# 通过tf.device将运算指定到特定的设备上。
with tf.device('/cpu:0'):
   a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
   b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
with tf.device('/gpu:1'):
    c = a + b

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)

2. 虚拟化使用GPU的方案

通过KVM虚拟化实例使用CPU和内存等资源,GPU不参与虚拟化。不同容器共享使用物理GPU资源

3. 分布式TensorFlow

#coding=utf-8  
#多台机器,每台机器有一个显卡、或者多个显卡,这种训练叫做分布式训练  
import  tensorflow as tf  
#现在假设我们有A、B、C、D四台机器,首先需要在各台机器上写一份代码,并跑起来,各机器上的代码内容大部分相同  
# ,除了开始定义的时候,需要各自指定该台机器的task之外。以机器A为例子,A机器上的代码如下:  
cluster=tf.train.ClusterSpec({  
    "worker": [  
        "A_IP:2222",#格式 IP地址:端口号,第一台机器A的IP地址 ,在代码中需要用这台机器计算的时候,就要定义:/job:worker/task:0  
        "B_IP:1234"#第二台机器的IP地址 /job:worker/task:1  
        "C_IP:2222"#第三台机器的IP地址 /job:worker/task:2  
    ],  
    "ps": [  
        "D_IP:2222",#第四台机器的IP地址 对应到代码块:/job:ps/task:0  
    ]})

使用分布式的TensorFlow比较容易。只需在集群服务器中为 worker 节点分配带名字的IP。 然后 就可以手动或者自动为 worker 节点分配操作任务



14. GPU 显存资源监控

一个Server端的外挂模块,提供任务特征到资源特征的映射数据集,方便后续预测模型构建以及对芯片资源能力的定义

利用 with tf.device("{device-name}") 这种写法,可以将with statement代码块中的变量或者op指定分配到该设备上。 在上面例子中,变量 Wb 就被分配到 /cpu:0 这个设备上。注意,如果一个变量被分配到一个设备上,读取这个变量也就要从这个设备读取,写入这个变量也将会写入到这个设备。 而 output (也就是一个 tf.matmul 矩阵乘法的计算操作,跟着一个tensor的加法的计算操作),以及后面的 loss 的计算(即对 output 调用了 f 这个函数,该函数中可能还有很多逻辑,涉及很多tensor运算的op),分配给了 /gpu:0 这个设备。

基本原则:变量放到CPU,计算放到GPU。

这时,TensorFlow实际上会将代码中定义的Graph(计算图)分割,根据指定的device placement将图的不同部分分配到不同的设备上,并且在设备间建立通信(如DMA,Direct Memory Access)。这些都不需要在应用代码层面操作。

单机多卡

当我们在一台机器上有多个GPU可用时,要利用多个GPU,代码编写方式的示意如下:

# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
  for i in xrange(FLAGS.num_gpus):
    with tf.device('/gpu:%d' % i):
      with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
        # Dequeues one batch for the GPU
        image_batch, label_batch = batch_queue.dequeue()
        # Calculate the loss for one tower of the CIFAR model. This function
        # constructs the entire CIFAR model but shares the variables across
        # all towers.
        loss = tower_loss(scope, image_batch, label_batch)

        # Reuse variables for the next tower.
        tf.get_variable_scope().reuse_variables()

        # Retain the summaries from the final tower.
        summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

        # Calculate the gradients for the batch of data on this CIFAR tower.
        grads = opt.compute_gradients(loss)

        # Keep track of the gradients across all towers.
        tower_grads.append(grads)

# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)

本质上分配设备的方式和单机单卡的情况是一样的,使用同样的语法。 在上例中,假设我们有2个GPU,则代码会按照相同的逻辑定义两套操作,先后分配给名为 /gpu:0/gpu:1 的两个设备。

注意:

  1. tensorflow的代码中cpu和gpu的设备编号默认从0开始

  2. 比如我们在机器上看到有两块GPU,通过CUDA_VISIBLE_DEVICES环境变量进行控制,起了一个进程,只让0号GPU对其可见,再起一个进程,只让1号GPU对其可见,在两个进程的tensorflow代码中,都是通过/gpu:0来分别指代它们可用的GPU。

  3. 上例属于in-graph,从tensorboard绘制的计算图中可以明显看出来(下文会有对比展示)

  4. 上例属于数据并行

  5. 上例属于同步更新

下面展示一些示例,运行的代码是以TensorFlow官网指南(https://www.tensorflow.org/guide/using_gpu )为基础的,在单机2GPU的环境以multi-tower方式运行。运行过程中记录了Tensorboard使用的summary

可以看到,CPU, GPU:0, GPU:1分别用三种颜色进行了标记。

100. 参考资料

MLCommons

如何在GPU实例上部署NGC环境?_GPU云服务器-阿里云帮助中心

TensorFlow | NVIDIA NGC

搭建深度学习docker容器(2)- CentOS7安装NVIDIA-Docker | Luck_zy

Docker安装Docker-Compose - 哔哩哔哩

CentOS7安装nvidia-docker - CodeAntenna

os.environ['TF_CPP_MIN_LOG_LEVEL']无效_os.environ['tf_cpp_min_log_level'] = '2'无效_yulanf的博客-CSDN博客

用尽每一寸GPU,阿里云cGPU容器技术白皮书重磅发布!-阿里云开发者社区

李沐论文精读系列一: ResNet、Transformer、GAN、BERT_神洛华的博客-CSDN博客

从源代码构建  |  TensorFlowhttps://blog.51cto.com/u_16175443/6729104

如何查看docker容器的操作系统_mob649e8156b567的技术博客_51CTO博客

上传图片 – remove.bg

重要参考资料

本文大部分内容都是看了自以下几个资料再进行试验总结出来的:

  1. Distributed Tensorflow (TensorFlow官网): https://www.tensorflow.org/deploy/distributed

  2. Distributed TensorFlow (TensorFlow Dev Summit 2017): https://www.youtube.com/watch?v=la_M6bCV91M&index=11&list=PLOU2XLYxmsIKGc_NBoIhTn2Qhraji53cv

  3. Distributed TensorFlow (TensorFlow Dev Summit 2018): https://www.youtube.com/watch?v=-h0cWBiQ8s8 (本文没有包括Dev Summit 2018这个talk的内容,这里面除了基本原理之外,只讲了TensorFlow如何支持All Reduce,但是只适用于单机多卡,并且是High Level API。多机多卡的方面演讲者也只推荐了Horovod这种方式。)

  4. 另外还有官网关于使用GPU的指南: https://www.tensorflow.org/guide/using_gpu

网上搜到有点用的博客文章很多也是这样,强烈推荐观看这段视频。

  • 11
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方狱兔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值