AI学习AI知识路线

数学基础

一、数据分析

二、概率论

三、线性代数及矩阵

l 数学基础 1)常数e2)导数3)梯度

4)Taylor5)gini系数6)信息熵与组合数

1)概率论基础2)古典模型3)常见概率分布 4)大数定理和中心极限定理5)协方差(矩阵)和相关系数 6)最大似然估计和最大后验估计

1)线性空间及线性变换2)矩阵的基本概念练3) 状态转移矩阵4)特征向量5)矩阵的相关乘法6)矩阵的QR分解 7)对称矩阵、正交矩阵、正定矩阵8)矩阵的SVD分解9)矩阵的求导 10)数据白化及其应用

Python 基础

1)Python 环境安装 2)Anaconda3)PyCharm

1)变量 2)数据类型 3)列表 4)元组 5)字典 6)控制语句 7)循环语句 8)函数 9)类对象

1)numpy:
用 Numpy 创建数组并查看其属性 Numpy 的 基本运算 Numpy 的基本函数索引,

l 学习大纲

阶段

主讲内容

技术要点

阶段

主讲内容

技术要点

一、环境搭建

二、Python 基础语法

Python 基础

三、Python 常用库

四、Python 机器学习 模块

切片和迭代形状操作深拷贝广播法则
2)pandas:
Series 的创建和基本的操作 DataFrame 的创建 和基本的操作 Panel 的创建和基本的操作用
Pandas 常用函数查看和操作数据
3)scipy:
基本可以代替 Matlab 的工具包,方便、易于使用、 专为科学和工程设计的 Python 工具包. 它包括统计,优化,整合,线性代数模块,傅里叶变换, 信号和图像处理,常微分方程求解器等 4)matplotlib:
Python 中最著名的绘图系统 散点图,折线图,条形图,直方图,饼状图, 箱形图的绘制 坐标轴的调整,添加文字注释,区域填充, 及特殊图形 patches 的使用
5)seaborn:
在 matplotlib 的基础上进行了更高级
API 的封装,从而使得作图变得更加容易。
6)time
Python 时间模块常用函数

Scikit-Learn

阶段

主讲内容

技术要点

机器学习

一、机器学习 二、数据预处理 三、线性回归算法 四、KNN K近邻算法

五、逻辑回归算法 六、梯度下降算法 七、牛顿法与拟牛顿法

八、决策树算法

九、Bagging集成算法 十、Adaboost算法 十一、GBDT算法

十二、XGboost和lightGBM算法

十三、支持向量机

十四、聚类算法

1)机器学习概述2)定义问题

1)特征抽取2)特征转换3)归一化

1)线性回归2)Ridge岭回归3)Lasso回归4)Elastic Net算法

1)KNN算法原理2)KNN算法应用

1)sigmoid函数2)逻辑回归的损失函数3)逻辑回归的优化 4)逻辑回归的多分类问题5)Softmax回归多分类

1)批量梯度下降2)随机梯度下降3)mini-batch梯度下降 1)牛顿法求函数根2)牛顿法求解函数最优化问题

3)拟牛顿法—L-BFGS 1)决策树的简介2)CART、ID-3、C4.53)gini系数

4)信息增益5)信息增益率6)叶子节点的表达7)回归树 8)预剪枝和后剪

1)bootstrap2)随机森林

1)Adaboost算法流程2)Adaboost算法损失函数优化

1)函数空间梯度下降2)GBM框架3)GBDT算法解决回归问题

1)目标函数的建立2)子树的分裂条件3) 子树叶子节点的表达 4)与传统GBDT的比较

1)线性可分支持向量机2)软间隔支持向量机3)核函数方法 4)SMO算法5)SVM回归SVR和分类SVC

1)各种相似度距离测度方法2)K-Means算法 3)K-Means算法优缺点4)密度聚类5)层级聚类6)谱聚类

十五、PCA主成分分析算法 十六、LDA降维 十七、MDS降维算法 十八、ISO-map降维算法 十九、LLE算法

二十、SVD奇异值分解算法

二十一、ALS矩阵分解算法 二十二、FM 因子分解机

二十三、朴素贝叶斯算法 二十四、贝叶斯网络

二十五、隐马尔可夫模型

二十六、最大熵模型

二十七、EM算法 二十八、条件随机场

1) 方差最大化投影2) 矩阵的特征值与特征向量3) PCA降维 1) LDA投影标准2) LDA降维算法
1) 基于空间距离保持的方法2) MDS算法原理
1) 近似测地距离的计算2) 最短路径距离算法3) ISO-map算法原理 1) 数据点的局部线性关系2) LLE算法原理

1) 方阵的特征值分解2) 矩阵的奇异值分解3) 左右奇异向量 4) 推荐系统应用

1) 矩阵分解的另一种方式2) 评估近似矩阵的方法 3) ALS矩阵分解

1) FM模型介绍2) FM算法详解 1)朴素贝叶斯2)文本分类上的应用

1) 有向概率图模型2) 生成模型
3) 贝叶斯网络联合分布的表达4) 贝叶斯网络性质

1)隐马可夫模型的基本概念2)概率计算问题 3)前向/后向算法4)维特比算法

1) 随机变量的熵、联合熵、相对熵、互信息 2) 最大熵原理3)最大熵模型的学习 4)最大似然估计5)模型学习的最优化算法

1)EM算法原理及收敛性 2)EM算法在高斯混合模型学习中的应用

1)条件随机场的定义与形式2)条件随机场的学习方法

二十九、PLSA 主题模型

三十、LDA主题模型

三十一、神经网络

1) LSA潜语义分析2) PLSA的模型拓扑 3) EM算法应用于PLSA模型训练

1)LDA主题模型概述2)共轭先验分布 3)狄利克雷分布4)Laplace平滑5)Gibbs采样详解 6)LDA与词向量Word2Vec效果比较

1) 前向传播2) 反向传播3) 激活函数 4) 梯度弥散/消失5) 参数初始化
6) 多层感知机

大数据机器学习

1)Spark 分布式安装 2)Spark 核心算子操作 1)Spark 核心模块剖析 2)PySpark

阶段

主讲内容

技术要点

大数据机器学 习

一、Spark 入门 二、Spark 进阶

三、Spark MLlib 模块 四、Spark ML 模块 五、Spark SQL 模块 六、Spark Streaming 模块 七、案例

1)PageRank2)交通路况预测 3)股票预测

深度学习

阶段

主讲内容

技术要点

深度学习

一、 深度学习Tensorflow基础 二、 深度神经网络DNN

三、 卷积神经网络CNN

四、 循环神经网络RNN 五、 自编码器AutoEncoder 六、 对抗生成网络 GAN 七、 Tensorflow框架进阶

八、 Word2Vec词向量算法

1)TensorFlow框架特性与安装2)Tensorflow编程基础 1) Tensorflow深度神经网络实现

1)Tensorflow卷积神经网络实现 2)Tensorflow实现经典AlexNet模型 3)Tensorflow实现经典VGG模型

1) BasicRNNCell2) GRU单元3) LSTM单元 1) Tensorflow 自编码网络实现
1) 深度卷积生成网络DCGAN 1)Tensorflow源代码解析2)Tensorboard可视化 1) CBOW模式2) Skip-Gram模式

3) Tensorflow实现Word2Vec词向量算法 1)Keras简介及Keras中的数据处理

2)Keras中的模型3)Keras中的重要对象4)Keras中的网络层构造

1)Softmax Regression识别手写数字 2)CNN卷积神经网络做图片分类 3)机器自动写文章 4)Tensorflow中用DCGAN生成图像 5)情感分析

机器学习

九、 Keras框架

十、 案例

阶段

项目名称

项目描述

项目简介 使用数据来自某互联网平台手机助手,项目目标通过机器学习所学 知识挖掘平台手机用户喜好,给用户准确推荐手机软件,类似 360 手机助手、华为手机助手、百度手机助手推荐功能, 做到实时个性化推荐

项目一 推荐系统 项目特色 架构完善综合大项目,从前到后贯穿,利用分布式文件系统

项目二

用户画像

存储用户行为数据,使用 Spark 程序进行数据分析,利用分 布式 SQL 来进行数据清洗,特征抽取,python 脚本构建训 练集,利用分布式机器学习算法训练模型,线上 Web 来调用 使用模型

项目简介 用户画像是真实用户的虚拟代表,是建立在一系列真实数据之 上的目标用户模型。通过用户调研去了解用户,根据他们的目 标、行为和观点的差异,将他们区分为不同的类型,然后每种类 型中抽取出典型特征,赋予名字、照片、一些人口统计学要素、 场景等描述,就形成了一个人物原型。通过人物原型,可以给 用户更加精准的搜索和推荐结果。
项目特色 根据用户历史浏览数据,对用户进行行为分析,精准建模。 通过用户模型,可以对用户进行精准推荐,精准投放广告。

项目简介 黑色素瘤,又称恶性黑色素瘤,是来源于黑色素细胞的一类 恶性肿瘤,常见于皮肤,亦见于黏膜、眼脉络膜等部位。 黑色素瘤是皮肤肿瘤中恶性程度最高的瘤种,容易出现远 处转移。该疾病如果早期治疗,患者可以完全康复。可见 早期诊断和治疗因而显得尤为重要。我们开发一款 app,

项目三

皮肤癌检测

项目四

自动聊天机器人

面向手机用户,你可以随时用 app 开个摄像头让机器医生帮我们看 一看,这是不是皮肤癌的早期症状。
项目特色
面向手机用户,操作方便,利用深度学习高级框架 Keras 进行开发,

项目简介 聊天机器人是一个用来模拟人类对话或聊天的程序。聊天机器人主要 应用场景包括智能客服、虚拟机器人、智能手表、智能车载和智能家 居。我们开发一款基于深度学习的中文聊天机器人,可在中文语义理 解方面达到较高的准确率。
项目特色 基于深度学习的中文聊天机器人,项目涵盖了中文分词,语义分析, 命名实体识别等中文 NLP 技术。

项目简介 目标检测,工业界关注的主要是人脸,人,车这些对监控、交通 等领域非常重要的目标。
我们将所有的方法都概括成:候选窗口 + 分类 or 回归。人在识 别物体的时候,第一次可能只是知道这是一个单独的物体,也知道 bounding box,但是不知道类别;当人类通过其他渠道学习到类 别的时候,下一次就能够识别了;目标检测也是如此,我们不可能 标注所有的物体的类别,我们将这种快速学习的机制引入。 项目特色 基于深度学习,使语意信息和分割结合,为目标检测提供信息, 进行目标检测。

项目简介
智能人脸识别基于深度学习以及以 GPU 为核心的异构并行计算 架构,接入高清网络摄像机,实现高质量的人脸特征提取、人脸 自动抓拍、自动识别、自动比对等功能。
项目特色

项目五

深度学习目标检测

项 目 六

人脸识别项目

项 目 七

对视频监控中出现的人脸进行自动检测,进行目标库检索,输出 在目标库中检索出与该人脸图片相似度高的对应的目标库人员的 详细信息。

项目简介 所谓图像风格迁移,是指利用算法学习著名画作的风格,然后再把 这种风格应用到另外一张图片上的技术。著名的图像处理应用 Prisma 是利用风格迁移技术,将普通用户的照片自动变换为具有 艺术家的风格的图片。

图像风格迁移 项目特色 不仅讲解了原始图像风格迁移的基本原理,其中内容损失、风格

损失两种损失函数的定义尤为关键。接着讲解了快速图像风格迁 移的原理,并实现快速图像风格迁移,并对项目一些实现细节 进行研究,掌握风格迁移这一领域的思想与 TensorFlow 种 相应的实现方法。

项目简介 机器翻译是指用机器将一种语言自动翻译成另外一种语言的技术。 传统机器翻译采取基于规则或基于词组统计规律的方法。随着深度 学习技术的发展,神经网络机器翻译首先将源句子向量化,转化 成计算机可以“理解”的形式,再生成另一种语言的译文,更贴

机器翻译引擎构建 合原意也更符合语法规范的翻译。各大商业公司都开始使用神 经网络机器翻译代替原来的机器翻译系统。

项目特色
利用 RNN 网络结构:Encoder-Decoder(也叫 Seq2Seq),并且 引入它的重要改进—注意力机制,接着构建两个神经网络翻译模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方狱兔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值