python knn预测双色球_以KNN为例用sklearn进行数据分析和预测

该博客介绍了如何使用Python的sklearn库中的KNN(K最近邻)算法进行数据预处理、模型训练和测试。通过乳腺癌数据集展示了数据加载、训练集测试集划分、KNN模型构建以及K折交叉验证的过程,探讨了选择最佳参数的重要性,并讨论了归一化在KNN模型中的作用。
摘要由CSDN通过智能技术生成

准备

相关的库

相关的库包括:

numpy

pandas

sklearn

带入代码如下:

import pandas as pd

import numpy as np

from sklearn.neighbors import KNeighborsClassfier as KNN

数据准备

数据是sklearn的乳腺癌数据。

from skleanr.datasets import load_breast_cancer

data=load_breast_caner()

data主要分为两部分:data和target,把这两部分,设置变量导入DataFrame中可查看基本形状。

X = data.data

y = data.target

sklearn的数据其形式比较固定,data的主要属性有:

data。数据,即变量的值,多行多列

target。目标,即因变量的值,一般是一行

DESCR。描述,可打印出,描述变量、目标

features_names 。X的列名

target_names。Y的列名

filename。数据文件所在位置(一般在\lib\site-packages\sklearn\datasets\data\目录下)

分数据集和测试集:

from sklearn.model_selection import train_test_split

Xtrain,Xtest,Ytrain,Ytest=train_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值