捕获 视角_谷歌最新3D人体捕获装置:LED蛋,背景、阴影、光照随意调

谷歌推出创新3D人体捕获设备——LED蛋,该装置能精确捕获表演者的动作,并允许在后期制作中自由调整背景、阴影和光照,实现更逼真的特效场景。
部署运行你感兴趣的模型镜像
0ab0e28b380a1842b8a2568ba677fdc0.png

影视作品里许多特效场景都需要借助绿幕完成,在技术不过硬的时候,常会发生「五毛特效」的惨案。来自谷歌的研究者发明了一种 Bling Bling 的「LED 蛋」3D 人体捕获装置:先把表演者请进「蛋」里一阵猛拍,然后进行重建和渲染,就能任意切换人物所处的环境,连光照、阴影都可以根据环境进行调整,简直完美。

ccae82113843d61c55726c8f7dae2135.gif

「灯光」在影视作品、游戏和虚拟环境中的作用至关重要——有时候它是决定一个场景表演质量的关键,这个很容易理解。 比如某些古装剧的某些场景会让人非常出戏,除了演员的演技太差之外,很有可能是因为光效不太自然,盯着电视机屏幕时,你甚至能想象出来演员头顶的摄影棚。

ea7d31d90e0e10b9a69566073716d14b.gif

在影视制作过程中,想要复制完美的光效仍然是个难题。 随着计算机视觉技术的演进,计算机已经能够比较「自然」地还原人脸形状、皮肤纹路,但是在模拟灯光条件这一块还是缺乏写实感。 谷歌这个全新的系统可以完美还原人物周围的光影效果,使得合成的影像看起来更加逼真。 通过与 AR 等技术的融合,该系统可以无缝地将捕捉到的人体融合到现实世界中或电影、游戏等中的数字场景。 它可能会彻底变革 3D 捕获技术领域。

7a9ae10a60deecd2d097cdb4f231b5d0.gif

用来拍摄的「LED 蛋」。

dd2a71649149b84a65a192823d551989.gif

人在「LED 蛋」中完成各种动作。 这个「LED 蛋」实际上名为 Relightables,它可以捕捉人身上的反射信息,即光线与皮肤的交互,这是数字 3D 人物看起来是否逼真的关键。 之前的研究要么使用平面照明,要么需要计算机生成人物。 谷歌的系统不仅能捕捉人身上的反射信息,还能记录人在 3D 环境中自由移动时的信息。 因此,该系统能够在任意环境中重新调整人物的光照。

ee7e25eb9b9e2d1e4d166564f4427e4b.png

图 1:  Relightables 系统,这个体积捕获设置将传统的计算机视觉流程与深度学习的最新进展相结合,可以在任意环境中重现高质量模型。 论文地址:https://dl.acm.org/citation.cfm?id=3356571 在之前的研究中,相机只从单一的视角和光照条件下记录人体。但谷歌的系统可以让用户在任意视角和条件下查看被记录的人, 不需要绿幕来创建特效 ,可以实现更加灵活的照明条件。 在 11 月 17 日-20 日于澳大利亚举行的 ACM SIGGRAPH 亚洲展览会上,谷歌公开展示了 Relightables 系统。 Relightables 系统 谷歌的 Relightables 系统工作流程可分为三个部分: 捕捉、重建和渲染 。首先,研究者设计了一个全新的主动深度深度传感器,用来捕捉 12.4MP 的深度图。然后,他们展示了如何设计一个混合几何和机器学习重建流程来处理高分辨率输入并输出一个体积视频。接下来,他们利用在 60Hz 频率下获得的两种交替颜色梯度照明图像中的信息,为动态表演者生成时间上一致的光照图像。 总体流程如下:

c4b9188a79c76eb93e0cd9bdaa88fa52.png

图 8: Relightables 流程(第一部分)。 首先,原始图像将用于重建高质量 3D 模型。

afb0799bdb69daf1d2cd5553db9d6716.png

图 9: Relightables 流程(第 2 部分)。 对该网格进行下采样,随时间推移跟踪并进行参数化。

7365f6a983e4b2044630b184e101a622.png

图 10: Relightables 流程(第 3 部分)。 最后,由两个梯度照明条件推断出反射率图。 捕捉 该系统的核心依赖于一个包含多视角(主动)立体深度传感器的灯光球面舞台,舞台周围有 331 个可编程的灯以及 90 个高分辨率 12.4MP 重建相机。

b731ffafaf034001af14f622be45cb71.gif

捕捉人体所用的相机包含 32 个红外(IR)相机和 58 个 RGB 相机。 红外传感器提供准确、可信赖的 3D 数据,RGB 相机捕捉高质量几何法线贴图和纹理。 这些相机以 60Hz 的频率记录原始视频,研究者基于球面梯度照明交替使用两种不同的照明条件。 用于捕捉人体的相机如下所示:

dd6ccec38332ae9e064e9d3ef429229a.png

图 3: 主动深度传感器组件。 捕捉 600 帧(10 秒)的图像可以生成 650GB 的数据。 对于每个部分,研究者还记录了一个几何校正序列和一个 50 帧的 clean-plate 序列(即没有人的舞台)。 后者用于在实际表演过程中分割表演者。 重建 接下来,研究者将数据上传到公共存储库中,第一个阶段是生成每个「机位」的深度图、分割图和 3D 网格 [Kazhdan 和 Hoppe 2013]。 他们用一个对齐算法来处理重建网格的序列,如此一来,长的子序列就可以共享常见的三角定位(triangulation)。 研究者提出了一种新的方法来解决关键帧的选择问题,将其转变为一个 MRF 推理问题来解决。 每个独特的三角定位都被参数化为普通的 2D 纹理空间,该空间可以和所有共享该三角定位的帧共享。 渲染 每个网格都有两个可用的梯度球形照明图像,从中可以生成反照率、法线、光泽度和环境光遮挡图。 这些图与标准渲染引擎兼容,可用在任何设定的光线条件下重新生成渲染图像。 系统各模块到底怎么样? 整个系统是非常复杂的一个处理流程,研究者在论文中分析了系统的主要模块,从而验证提出的方法。 这些模块评估包括深度预测、图像分割、最优网格追踪、UV 参数化、纹理对齐等等,这一部分只简要展示几大模块的效果,更多的评估效果可参考原论文。

2ff1726a852b1d491a4ab3501e38eac9.png

对于深度估计模块,图像展示了 SAD 和 VGG 在基于 RGB 图像做立体匹配的效果。 我们可以看到论文采用的 VGG 要提供更加平滑的结果。 研究者表示,从立体视角中抽取深度图像特征非常重要,他们表示尽管 VGG 这类深度模型非常强大,但它在牛仔裤等少纹理的区域效果还是不够好。 对于分割模块,研究者使用深度学习将先验知识都嵌入到 CRF 中,包括前景与背景的颜色和深度信息。

23ae398fee78328a4d9da4aa6fecdb77.png

研究者的立体分割能够标注手上的篮球,这在单图像分割是做不到的。

804e19c4ebb1638562f449d8ce7a394f.png

纹理对齐大大改善了快速切向运动时的渲染效果。 相比 Collet 等人最佳的体积重建模型,研究者重现实现了很多模块。 如下所示为研究者提出的分割方法与 Collet 等人方法的对比。 其中研究者的方法能生成高质量的结果,而 Collet 也能生成非常令人满意的纹理网格,只不过 Collet 缺失了高频细节。

fc12772b86ef2ac44a90d3f8d7ee5c9e.png

图 19: 研究者的重构结果与 Collet 方法的对比,由于更高的分辨率、深度相机和光度立体法估计,研究者的方法展示了更多的几何细节。 参考链接:https://techxplore.com/news/2019-11-google-captures-character-virtually-environment.html

推荐阅读

(点击标题可跳转阅读)

最详细、最完整的相机标定讲解

深度学习+机器视觉=下一代检测

视觉检测系统最经典的结构你了解吗?

机器视觉技术的十大应用领域

工业相机和普通相机究竟有什么不同?

基于机器视觉和深度学习的智能缺陷检测

波士顿等移动机器人的视觉算法解析

2020年37个人工智能技术发展趋势

机器视觉的光源选型及打光方案分析

光学三维测量技术及应用

国内80%搞机器视觉的工程师,走的路子是错的!

视觉+机器人,如何实现连接器的自动装配?

机器视觉技术发展的五大趋势

搞懂机器视觉基本内容,这份PPT就够了

机器视觉:PC式视觉系统与嵌入式视觉系统区别  

基于HALCON的机器视觉开发,C++或C#如何选择? 

3D视觉技术在机器人抓取作业中的应用实例

基于机器视觉的粗糙度检测方案

机器视觉常用图像软件对比及分析

工业相机编程流程及SDK接口使用汇总

cecba670124e0249a356f2bfbafb5690.gif End cecba670124e0249a356f2bfbafb5690.gif

声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

b7e58fd8d12d67444b15315de1da2159.png

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

在信息技术快速发展的背景下,构建高效的数据处理与信息管理平台已成为提升企业运营效能的重要途径。本文系统阐述基于Pentaho Data Integration(简称Kettle)中Carte组件实现的任务管理架构,重点分析在系统构建过程中采用的信息化管理方法及其技术实现路径。 作为专业的ETL(数据抽取、转换与加载)工具,Kettle支持从多样化数据源获取信息,并完成数据清洗、格式转换及目标系统导入等操作。其内置的Carte模块以轻量级HTTP服务器形态运行,通过RESTful接口提供作业与转换任务的远程管控能力,特别适用于需要分布式任务度与状态监控的大规模数据处理环境。 在人工智能应用场景中,项目实践常需处理海量数据以支撑模型训练与决策分析。本系统通过整合Carte服务功能,构建具备智能度特性的任务管理机制,有效保障数据传递的准确性与时效性,并通过科学的并发控制策略优化系统资源利用,从而全面提升数据处理效能。 在系统架构设计层面,核心目标在于实现数据处理流程的高度自动化,最大限度减少人工干预,同时确保系统架构的弹性扩展与稳定运行。后端服务采用Java语言开发,充分利用其跨平台特性与丰富的类库资源构建稳健的服务逻辑;前端界面则运用HTML5、CSS3及JavaScript等现代Web技术,打造直观的任务监控与度操作界面,显著提升管理效率。 关键技术要素包括: 1. Pentaho数据集成工具:提供可视化作业设计界面,支持多源数据接入与复杂数据处理流程 2. Carte服务架构:基于HTTP协议的轻量级服务组件,通过标准化接口实现远程任务管理 3. 系统设计原则:遵循模块化与分层架构理念,确保数据安全、运行效能与系统可维护性 4. Java技术体系:构建高可靠性后端服务的核心开发平台 5. 并发管理机制:通过优先级度与资源分配算法实现任务执行秩序控制 6. 信息化管理策略:注重数据实时同步与系统协同运作,强化决策支持能力 7. 前端技术组合:运用现代Web标准创建交互式管理界面 8. 分布式部署方案:依托Carte服务实现多节点任务分发与状态监控 该管理系统的实施不仅需要熟练掌握Kettle工具链与Carte服务特性,更需统筹Java后端架构与Web前端技术,最终形成符合大数据时代企业需求的智能化信息管理解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【数据融合】【状态估计】基于KF、UKF、EKF、PF、FKF、DKF卡尔曼滤波KF、无迹卡尔曼滤波UKF、拓展卡尔曼滤波数据融合研究(Matlab代码实现)内容概要:本文围绕状态估计与数据融合技术展开,重点研究了基于卡尔曼滤波(KF)、无迹卡尔曼滤波(UKF)、扩展卡尔曼滤波(EKF)、粒子滤波(PF)、固定增益卡尔曼滤波(FKF)和分布式卡尔曼滤波(DKF)等多种滤波算法的理论与Matlab代码实现,涵盖其在非线性系统、多源数据融合及动态环境下的应用。文中结合具体案例如四旋翼飞行器控制、水下机器人建模等,展示了各类滤波方法在状态估计中的性能对比与优化策略,并提供了完整的仿真代码支持。此外,还涉及信号处理、路径规划、故障诊断等相关交叉领域的综合应用。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、机器人、导航与控制系统开发的工程技术人员。; 使用场景及目标:①深入理解各类卡尔曼滤波及其变种的基本原理与适用条件;②掌握在实际系统中进行状态估计与数据融合的建模与仿真方法;③为科研项目、论文复现或工程开发提供可运行的Matlab代码参考与技术支撑; 阅读建议:建议结合文中提供的Matlab代码逐项运行与试,对照算法流程理解每一步的数学推导与实现细节,同时可拓展至其他非线性估计问题中进行对比实验,以提升对滤波算法选型与参数优的实战能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值