- 博客(284)
- 收藏
- 关注

原创 【超详细】手把手教你使用YOLOX进行物体检测(附数据集)
改进后的YOLO算法——YOLOX,不仅实现了超越 YOLOv3、YOLOv4 和 YOLOv5 的 AP,而且取得了极具竞争力的推理速度。本篇将超详细地讲解如何使用YOLOX进行物体检测,非常值得一读!
2022-03-29 11:47:58
3433
20

原创 大火的何恺明:MAE——用于计算机视觉的可扩展自监督学习神器
作者:王浩 毕业于北京航空航天大学,人工智能领域优质创作者,CSDN博客认证专家首发:公众号【3D视觉开发者社区】导语:近期,何铠明的新作可谓是火出了圈,毕竟何佬出品必是精品,由何佬提出的的ResNet、Faster RCNN等模型一直被大家学习和研究。如今,何铠明又带来一种用于计算机视觉的可扩展自监督学习器, 称之为”掩码自编码器 (MAE) “,本文将对该视觉学习器原理及实现方法进行解读。Masked Autoencoders Are Scalable Vision Learners论文.
2022-03-18 19:00:00
4535
2
转载 超详细!手把手教你从零开始训练yolov5模型
作者:抛到海里编辑:3D视觉开发者社区本文将从yolov5的下载安装开始,详细介绍从环境搭建到素材整理以及最后训练出目标图片模型的整个过程。以下为本文目录:一、anconda环境搭建二、yolov5下载安装三、素材整理四、模型训练。
2023-03-28 09:30:00
28
转载 双目立体匹配之视差优化
作者:秃头小苏@CSDN编辑:3D视觉开发者社区,致力于用最通俗的语言描述问题🍊近期目标:写好专栏的每一篇文章本文是自己的一篇学习笔记,记录自己学习立体匹配过程中的问题及总结,在此分享,转载请附原文链接。
2023-03-24 08:30:00
14
转载 【CVPR2021】用于立体匹配的可学习双边网格
高精度的实时立体匹配网络是时下研究的一个热点,它在自动驾驶、机器人导航和增强现实等领域中有着广泛的应用。虽然近年来对立体匹配网络的研究已经取得了显著的成果,但要同时兼顾实时性和高精度仍然是一个挑战。现有的高精度立体匹配网络,通常需要在较高的分辨率建立代价空间。比如,GANet在1/3分辨率建立代价空间,PSMNet在1/4分辨率,但这会影响网络的效率(GANet处理一对1242×375的图像,需要1.8s,PSMNet需要0.41s)。
2023-03-23 09:00:00
83
转载 双目立体匹配之代价聚合
作者:秃头小苏@CSDN编辑:3D视觉开发者社区本文是自己的一篇学习笔记,记录自己学习代价匹配过程中的问题,在此分享,转载请附原文链接在之前中已经简单介绍过代价聚合了,直白的说,其主要目的就是让匹配代价计算的效果更好。之前也介绍过立体匹配的第一步——匹配代价计算,我在文中介绍了相关的匹配代价计算方法,如AD、AD-cencus等等。通过这些方法我们可以得到一个代价矩阵C(DSI),矩阵C中存储了每个像素在视差范围内每个视差下的匹配代价值。这时候得到的代价矩阵C能不能直接拿来用呢?
2023-03-21 08:45:00
48
1
转载 视觉 Transformer 的可视化|CVPR2021
可视化对于Transformer的模型调试、验证等过程都非常重要,而目前现有工作对于Transformer可视化的探索并不是很多。过去可视化Transformer模型常见的做法是,针对单个注意力层,将注意力视为相关性得分;另一种则是组合多个注意力层,简单地平均获得每个标记的注意力。但由于更深的层更具有语义,而每次应用自注意力时,每个标记都会积累额外的上下文,这会导致信号模糊,各层的不同作用被忽视,并使得不相关的标记被凸显。
2023-03-17 08:30:00
55
转载 双目立体匹配之匹配代价计算
作者:秃头小苏@CSDN编辑:3D视觉开发者社区之前谈到过,主要分为四步(半全局方法):匹配代价计算、代价聚合、视差计算、视差优化。匹配代价计算是双目立体匹配的第一步,其有很多实现的方法,现举其中的几种方法,旨在理解匹配代价的计算过程。
2023-03-16 09:30:00
53
转载 一种实时轻量级3D人脸对齐方法
在三维人脸对齐领域,大多数研究者都集中在提高算法的预测精度上,而忽视了算法的可移植性。为此,本研究提出了一种实时三维人脸对齐方法,该方法使用一个具有高效反卷积层的编解码器网络。编码和解码特征的融合为该网络增加了更丰富的特征,同时加强了编解码阶段不同分辨率之间信息的传递。在解码阶段,一个高效的反卷积层应用L1范数选择具有代表性的特征通道,并通过线性运算生成更加丰富的特征从而缩短卷积运算耗时。
2023-03-09 08:30:00
60
原创 在ROS中使用奥比中光Orbbec Astra Pro深度相机(二)
在之前外面已经介绍过Orbbec Astra Pro深度相机,同学们可以点击了解详情,接着再来介绍介绍。功能包下载地址,可以直接用步骤里的git clone1)若已安装请忽略2)或者3)4)配置工作空间的环境变量(使用zsh终端的直接吧bash换成zsh就可以了,下同)如果这样设置环境变量,那么这个环境变量只对于此个终端有效,再打开一个终端是还需要再设置一下环境变量才行这样的话对打开的终端设置的环境变量都有效之前设置过环境变量的可以用下面这个命令修改。
2023-03-07 08:30:00
389
转载 SMOKE 单目相机 3D目标检测【训练模型】
本文基于SMOKE模型,使用kitti3D目标检测数据集进行训练,记录一下过程。如果发现有错误,欢迎指出。【论文解读】SMOKE 单目相机 3D目标检测(CVPR2020)_一颗小树x的博客-CSDN博客_smoke 论文CVPR2020 SMOKE 单目相机 3D目标检测【环境搭建篇】_一颗小树x的博客-CSDN博客目录一、下载kitti 3D目标检测数据集二、处理数据集三、开始训练。
2023-03-03 08:45:00
117
1
转载 Diffusion Model原理详解及源码解析
Hello,大家好,我是小苏🧒🏽🧒🏽🧒🏽今天来为大家介绍Diffusion Model(扩散模型 ),在具体介绍之前呢,先来谈谈Diffusion Model主要是用来干什么的。🥂🥂🥂其实啊,它对标的是生成对抗网络(GAN),只要GAN能干的事它基本都能干。🍄🍄🍄在之前我已经做过很多期有关GAN网络的教学,还不清楚的可以点击☞☞☞进入专栏查看详情。在我一番体验Diffusion Model后,它给我的感觉是非常惊艳的。我之前用GAN网络来实现一些图片生成任务其实效果并不是很理想,而且往往训练很不稳定。
2023-03-01 09:00:00
335
6
转载 检测三维物体?一篇文章认识《双目立体视觉》
双目立体视觉,由两个摄像头组成,像人的眼睛能看到三维的物体,获取物体长度、宽度信息,和深度的信息;单目视觉获取二维的物体信息,即长度、宽度。
2023-02-27 14:44:28
144
转载 DSRL:灵活而简单的框架,提高网络精度的且不引入额外的计算量,CVPR2020
深度学习网络模型的性能和网络的大小有着密切的关系,大型网络在性能上一般比小型网络模型更好,显而易见,大型网络推理运行时消耗的算力要求比较高,而算力代表“金钱”!。本文提出DSRL框架,引入了超分辨率作为辅助支路,来帮助网络保持高分辨率特征信息,并且在推理阶段将其从网络中删除,从而降低了算力(金钱)的消耗。
2023-02-23 14:36:38
65
转载 CVPR2021:推广到开放世界的在线自适应深度视觉里程计
这篇论文中,提出一个用于深度VO的在线自适应网络。与基于学习的位姿估计不同,论文的苏阿女法从深度和光流中解算出位姿,同时通过在线学习新观测的不确定性不断提高单证图像的深度估计。
2023-02-22 15:17:45
59
转载 目标检测实战:4种YOLO目标检测的C++和Python两种版本实现
使用C++编写一套基于OpenCV的YOLO目标检测,这个程序里包含了经典YOLOv3,YOLOv4,Yolo-Fastest和YOLObile这4种YOLO目标检测的实现。
2023-02-21 15:55:11
182
2
转载 综述:基于点云的自动驾驶3D目标检测和分类方法
本文基于现有的自动驾驶中利用3D点云数据进行目标检测的文献,从数据特征提取和目标检测模型等方面对不同技术进行比较。
2023-02-17 14:30:00
115
转载 综述:基于点云的自动驾驶3D目标检测和分类方法
本文基于现有的自动驾驶中利用3D点云数据进行目标检测的文献,从数据特征提取和目标检测模型等方面对不同技术进行比较。
2023-02-06 11:12:41
179
转载 一文详解如何在真实场景的双目立体匹配(Stereo Matching)获取深度图
双目立体匹配一直是双目视觉的研究热点,双目相机拍摄同一场景的左、右两幅视点图像,运用立体匹配匹配算法获取视差图,进而获取深度图。而深度图的应用范围非常广泛,由于其能够记录场景中物体距离摄像机的距离,可以用以测量、三维重建、以及虚拟视点的合成等。
2023-02-03 14:30:00
159
转载 CVPR 近二十年,影响力最大的 10 篇论文
今天,我们将对计算机视觉领域三大顶会之一CVPR在近二十年来中产生的优秀论文进行一个全面的盘点与总结。
2023-02-01 15:00:00
334
转载 多项评测排名第一!大连理工和微软亚研院提出目标跟踪算法STARK
本文简短介绍大连理工大学和微软亚洲研究院合作的最新工作:Learning Spatio-Temporal Transformer for Visual Tracking,代码已开源。
2023-01-31 10:02:26
244
转载 点云处理——将激光雷达数据投影到二维图像
为了将激光雷达传感器的“前视图”展平为2D图像,必须将3D空间中的点投影到可以展开的圆柱形表面上,以形成平面。
2023-01-28 19:45:00
507
转载 一个开源小项目,如何使用「分类网络」实现排球追踪
笔者最近接触到了一个很有趣的问题,有关于排球位置追踪。如果有看过排球比赛的话,大家想必都知道,排球的实时运动轨迹对排球的落点有很大的帮助。而如果可以预知排球的落点,就可以很好的在比赛中防住对手,把握取胜先机。因而产生了一个很有趣的问题:是否有可能预测比赛中的排球运动轨迹?这其实是一个典型的物体追踪问题,也是一个在笔者看来很有趣的题目。然而解决这类问题并不容易。首先,基于排球的视频数据集数量稀少,有了真值标注的数据集更是少之又少,如何搜索合适的数据是一个不好处理的问题。
2023-01-11 10:16:18
104
转载 损失函数技术总结及Pytorch使用示例
本文对损失函数的类别和应用场景,常见的损失函数,常见损失函数的表达式,特性,应用场景和使用示例作了详细的总结。
2023-01-04 17:33:07
112
转载 移动机器人视觉SLAM回环检测原理、现状及趋势
本文对回环检测的问题进行描述,对目前使用较多的传统回环检测方法进行梳理,总结与深度学习及语义分割等技术相结合的回环检测方法,在此基础上分析不同神经网络在公开数据集下的性能对比。
2022-12-02 14:59:47
182
转载 基于深度学习的复杂背景下目标检测
本文对现有的基础神经网络进行研究,结合VGGNet、SSD等技术,对背景部分进行处理,从而提高复杂背景下的目标检测精度。
2022-12-01 11:55:35
431
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人