df[2]=df[2].mask(df[1].str.contains('积分'),'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('收入'),'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('时长'),'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('金额'),'消费特征属性')
在执行这段代码的时候报错
错误原因:df[1] 这一列有 缺失值
解决办法:
1、使用**fillna()**函数填充缺失值
df[1]=df[1].fillna('test')
2、df[1].str.contains(‘时长’)返回的是一个布尔值,所以在其后面加上**==True**即可
df[2]=df[2].mask(df[1].str.contains('积分')==True,'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('收入')==True,'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('时长')==True,'消费特征属性')
df[2]=df[2].mask(df[1].str.contains('金额')==True,'消费特征属性')