c语言最大的整型变量,整型变量范围最大到32750?

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

main()

{

int a,b;

scanf("%d",&a);

for(b=0;b<800;b++)

{

if(a%2==0)

{a=a/2;}

else

{a=a*3+1;}

}

printf("%d",a);

getch();

}

编译执行以上代码,输入32751,那么输出-1.按照上面的算法是不可能输出-1的。

所以就是值过大了。输入32750,输出是1。说明这个值是不会导致出错的。

还有,大家能不能帮我看一下,我这个代码是否让计算机执行了下面所说的运算:

3x + 1 问题

从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。你会发现,序列最终总会变成 4, 2, 1, 4, 2, 1, … 的循环。

例如,所选的数是 67,根据上面的规则可以依次得到:

67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17,

52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...

数学家们试了很多数,没有一个能逃脱“421 陷阱”。但是,是否对于 所有 的数,序列最终总会变成 4, 2, 1 循环呢?

这个问题可以说是一个“坑”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从 3x + 1 问题的各种别名看出来: 3x + 1 问题又叫 Collatz 猜想、 Syracuse 问题、 Kakutani 问题、 Hasse 算法、 Ulam 问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做 3x + 1 问题算了。

直到现在,数学家们仍然没有证明,这个规律对于所有的数都成立。

这个代码是否可以做421运算的实验?让计算机帮我算。

因为怕循环次数不够,写800。在整型变量范围内试了一些数,确实输出也就1、2、4三个其中一个。

据说长整型变量最大值可以达到更高,谁告诉我定义长整型变量、输出长整型变量的值的代码怎么写?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值