数值分析与实验数学081 张燃 3080801119)
08级应用数学《数值分析与实验(实践)》任务书
一、设计目的
通过《数值分析与实验(实践)》实践环节,掌握本门课程的众多数值解法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题
二、设计教学内容
1、利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合;
试分别用抛物线和指数曲线拟合下列数据
1 1.5 2 2.5 3 3.5 4 4.533.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50
5 5.5 6 6.5 7 7.5 8267.55 280.50 296.65 301.40 310.40 318.15 325.15
比较2个拟合函数的优劣。
三、设计时间
2011—2012学年第1学期: 第16周 共计一周
教师签名:
2010年12月12日
前 言
数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等数学与计算机之间的一条通道数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分迭代方法、插值法、拟合法、最小二乘法等。
通过数值计算方法将理解掌握数值计算方法基本理论和求解数学模运算。提高的编程能力解决实际问题………6
1.4.2指数函数拟合运行结果…………………………………………………6
1.5结果分析……………………………………………………………………7
1.5.1抛物线的误差平方和分析………………………………………………7
1.5.2指数函数的误差平方和分析……………………………………………7
参考文献 ……………………………………………………………………………9
实验设计内容
一:曲线拟合研究
1.1 实验目的:了解最小二乘法的基本原理,通过计算机解决实际问题;
1.2 实验内容:利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合
试分别用抛物线和指数曲线拟合下列数据
1 1.5 2 2.5 3 3.5 4 4.533.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50
5 5.5 6 6.5 7 7.5 8267.55 280.50 296.65 301.40 310.40 318.15 325.15
比较2个拟合函数的优劣。
1.3 算法
已知数据,求多项式,使得为最小。注意到此时,多项式系数满足下面的线性方程组:
其中
然后只要调用解线性方程组的函数程序即可。
1.4 Matlab程序如下:
function ZXE(x,y,m)
S=zeros(1,2*m+1);T=zeros(m+1,1);
for k=1:2*m+1
S(k)=sum(x.^(k-1));
end
for k=1:m+1
T(k)=sum(x.^(k-1).*y);
end
A=zeros(m+1,m+1);a=zeros(m+1,1);
for i=1:m+1
for j=1:m+1
A(i,j)=S(i+j-1);
end
end
a=A\T;
for k=1:m+1
fprintf('a[%d]=%f\n',k,a(k));
end
1.4.1抛物线拟合运行结果:
在MATLAB软件里输入:
x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8]