索引的本质是什么?
索引是帮助MySql高效获取数据的排好序的数据结构
索引的数据结构有哪些?
1、二叉树
2、红黑树
3、Hash表
4、B-tree
索引中的数据是如何进行存储的?
建立索引的节点是以key+value的方式进行存储的,key就是索引字段,value是索引字段所在这一行的磁盘地址,最后根据磁盘地址获取该行所有数据
二叉树的特点和不足?
二叉树的特点就是节点右边的数据比该父节点大,左边的数据比该父节点小
缺点:对于单边增长的数据、放在二叉树中最后会变成链表、对于数据查询没有优化。
红黑树的特点和不足?
红黑树也叫做平衡二叉树,当二叉树单边增长太过分,底层会进行平衡
缺点:随着数据量的增大,树的深度会无线扩大、当要查找的是最底层的叶子节点,数据量太大是,查询效率较慢。
B树的特点是什么?
1、叶节点具有相同的深度、叶节点的指针为空
2、所有索引元素不重复
3、节点中的数据索引从左到右递增排序
B+树的特点是什么?
1、非叶子节点不存储data,只存储索引(冗余),可以放更多索引
2、叶子节点包含所有索引字段
3、叶子节点用指针连接,提高区间访问的性能
MySQL的存储引擎作用在哪里?
Mysql的存储引擎作用在表上、也可以作用于库上
MyIsAm和Innodb的特点?
Myisam的存储引擎底层就是B+树来实现的,Myisam索引文件和数据文件是分离的(非聚集)
Innodb的存储引擎也是B+树,但是使用的是聚集索引,聚集索引就是将叶子节点的索引和其他对应的数据值绑在一起,效率更高
1、表数据文件本身就是按B+树组织的一个索引结构文件
2、聚集索引的叶子节点包含了完整的数据记录
3、Innodb表必须要有主键,并且推荐使用整形的自增主键
什么是联合索引和最左前缀匹配原则?
Mysql建立联合索引时会遵循最左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配
为什么要使用联合索引?
减少开销。建一个联合索引(Gid,Cid,SId),实际相当于建了(Gid)、(Gid,Cid)、(Gid,Cid,SId)三个索引。每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
覆盖索引。对联合索引(Gid,Cid,SId),如果有如下的sql: select Gid,Cid,SId from student where Gid=1 and Cid=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io操作。减少io操作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
效率高。索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where Gid=1 and Cid=2 and SId=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合Gid=2 and Cid= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w,效率提升可想而知!
缺点。联合索引越多,索引列越多,则创建的索引越多,索引都是存储在磁盘里的,通过索引算法(Btree代表索引算法使用二叉树的形式来做索引的)来查找数据,的确可以极大的提高查询效率,但是与此同时增删改的同时,需要更新索引,同样是需要花时间的,并且索引所占的磁盘空间也不小。
建议。单表尽可能不要超过一个联合索引,单个联合索引不超过3个字段。