高考冲刺倒计时,要想高考取得高分,压轴题是必须攻克的难点。在分析高考压轴题时,经常有一些“神来之笔”的答案,导致看不懂、想不到。而高考又会在这些“超难点”处反复设题,以导数压轴题中的取值技巧为例,全国一卷就连续考了四年。下面我们来分析压轴题取值是如何想到的。
更多攻克压轴题方法,小题30秒速解公式,可点击本人头条首页“专栏“查看!小题30秒,大题5分钟高分模板!高考数学极速突破140分!

经典例题:[2017年全国卷,理21]
已知函数

(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围。
解析:
(Ⅰ)f(x)的定义域为(-∞,+∞)







故f(x)在(-lna,ln(3/a-1))上有一个实根。又f(x)在(-∞,-lna)上单调递减,在(-lna,+∞)上单调递增,故f(x)在R上至多两个实根。
又f(x)在(-1,-lna)及(-lna,ln(3/a-1))上均至少有一个实数根,故f(x)在R上恰有两个实根。
综上,a的取值范围是(0,1)。
答案难点:
如何想到取值x=ln(3/a-1)的呢?其它的值可以吗?
思路分析:
函数f(x)的解析式是由三个基本的初

难点突破:

总结:从上面可以看出:”简单“取值的背后隐藏着数学思想的方法,分析答案时就要把隐藏在答案后面的思维过程挖掘出来。这样才能举一反三,融会贯通,真正做到会一题,通一类。