与杨辉三角1相似,只是仅需要保存上一行数据即可
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> pre = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
for (int i = 0; i <= rowIndex; i++) {
cur = new ArrayList<>();
for (int j = 0; j <= i; j++) {
if (j == 0 || j == i) {
cur.add(1);
} else {
cur.add(pre.get(j - 1) + pre.get(j));
}
}
pre = cur;
}
return cur;
}
}
观摩大佬代码,减小空间复杂度
利用杨辉三角的特性:第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
根据组合的公式可以发现,杨辉三角一行每个数值与他前面的数值存在倍数规律
(注意,序列从0开始)
其他大佬的java代码:
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> list = new ArrayList<>(rowIndex + 1);
long s = 1;
for(int i = 0; i <= rowIndex; i++){
list.add((int)s);
s = s * (rowIndex - i) / (i + 1);
}
return list;
}
}