上一节介绍了自回归过程
![]()
,本节介绍移动平均过程
![]()
以及两者的结合
![]()
。然后推导脉冲响应函数。
一、移动平均过程
字面意思,移动平均过程(Moving Average Process, MA)指的是白噪声的移动平均,白噪声定义见第0节。根据白噪声滞后的阶数分为一阶和高阶。一阶的移动平均过程
![]()
具有以下形式:
其中,
![]()
为白噪声:
![]()
,
![]()
。
![]()
为待估计参数。常数
![]()
为
![]()
的均值。因为对等式两边求期望
![]()
。
高阶(
![]()
阶)的移动平均过程
![]()
形式如下:
其中,
![]()
为白噪声:
![]()
,
![]()
。
![]()
为待估计参数 。
![]()
为
![]()
的均值。
形式上看, 可以视为
![]()
自身均值与有限个白噪声的线性组合。或者理解为围绕自身均值进行白噪声形式的微小的波动。我们有
![]()
的时间序列数据,如何估计参数
![]()
?
![]()
不可行因为我们没有
![]()
的数据。
![]()
为独立同分布的正态分布,
![]()
是可行的。
二、自回归移动平均过程
自回归移动平均过程(
![]()
)由
![]()
和删去常数项的
![]()
两块组成,因为
![]()
中已经有常数项
![]()
,形式如下:
如果让
![]()
,就得到
其中,
![]()
。
![]()
的意义是把
![]()
的决定因素追溯到无穷远的过去,每期有一个冲击
![]()
,累加起来得到
![]()
。
![]()
要有意义,需要无穷级数
![]()
收敛。收敛的一个充分条件是系数绝对值可加总,即
![]()
。实践中样本容量有限,不能追溯到无穷远。但
![]()
仍有重要的理论意义,因为
![]()
与
![]()
都可以写为
![]()
的形式!证明见下。
三、脉冲响应函数
首先把
![]()
改写为
第一个等号是
![]()
的定义,第二个等号是
![]()
表达式的迭代,第三个等号省略的是
![]()
,
![]()
,...不断迭代。第四个等号是无穷等比数列求和。把最后一行对比
![]()
表达式,发现
![]()
相当于原来的
![]()
,
![]()
相当于原来的
![]()
,所以平稳的
![]()
和
![]()
是等价的!
为什么这么写?
因为改写之后,
![]()
可以视为过去所有扰动项效应之和,并且扰动项,或者叫冲击,对
![]()
的影响力呈几何级数递减,即
![]()
。表达式的含义:第
![]()
期的冲击
![]()
变化一个单位对
![]()
的影响为
![]()
。注意到
![]()
与绝对时间
![]()
无关,只是相对时间间隔
![]()
的函数。所以
![]()
被称为脉冲响应函数(Impulse Response Function,IRF)。字面意思就是刻画
![]()
对
![]()
一单位脉冲的响应。画在平面上就被称为脉冲响应图。类似地,采取不断迭代的方法,可以把
![]()
和
![]()
写成
![]()
的形式,定义脉冲响应函数。如何直观理解脉冲响应函数?具体例子见下一节。
小结:前3节从理论上讲了
![]()
模型。实践中,拿到数据之后,识别阶数,模型估计和预测的具体步骤如何操作?脉冲响应图怎么画?下一节会以
![]()
的时间序列数据为例来展示。