上一节介绍了自回归过程
,本节介绍移动平均过程
以及两者的结合
。然后推导脉冲响应函数。
一、移动平均过程
字面意思,移动平均过程(Moving Average Process, MA)指的是白噪声的移动平均,白噪声定义见第0节。根据白噪声滞后的阶数分为一阶和高阶。一阶的移动平均过程
具有以下形式:
其中,
为白噪声:
,
。
为待估计参数。常数
为
的均值。因为对等式两边求期望
。
高阶(
阶)的移动平均过程
形式如下:
其中,
为白噪声:
,
。
为待估计参数 。
为
的均值。
形式上看, 可以视为
自身均值与有限个白噪声的线性组合。或者理解为围绕自身均值进行白噪声形式的微小的波动。我们有
的时间序列数据,如何估计参数
?
不可行因为我们没有
的数据。
为独立同分布的正态分布,
是可行的。
二、自回归移动平均过程
自回归移动平均过程(
)由
和删去常数项的
两块组成,因为
中已经有常数项
,形式如下:
如果让
,就得到
其中,
。
的意义是把
的决定因素追溯到无穷远的过去,每期有一个冲击
,累加起来得到
。
要有意义,需要无穷级数
收敛。收敛的一个充分条件是系数绝对值可加总,即
。实践中样本容量有限,不能追溯到无穷远。但
仍有重要的理论意义,因为
与
都可以写为
的形式!证明见下。
三、脉冲响应函数
首先把
改写为
第一个等号是
的定义,第二个等号是
表达式的迭代,第三个等号省略的是
,
,...不断迭代。第四个等号是无穷等比数列求和。把最后一行对比
表达式,发现
相当于原来的
,
相当于原来的
,所以平稳的
和
是等价的!
为什么这么写?
因为改写之后,
可以视为过去所有扰动项效应之和,并且扰动项,或者叫冲击,对
的影响力呈几何级数递减,即
。表达式的含义:第
期的冲击
变化一个单位对
的影响为
。注意到
与绝对时间
无关,只是相对时间间隔
的函数。所以
被称为脉冲响应函数(Impulse Response Function,IRF)。字面意思就是刻画
对
一单位脉冲的响应。画在平面上就被称为脉冲响应图。类似地,采取不断迭代的方法,可以把
和
写成
的形式,定义脉冲响应函数。如何直观理解脉冲响应函数?具体例子见下一节。
小结:前3节从理论上讲了
模型。实践中,拿到数据之后,识别阶数,模型估计和预测的具体步骤如何操作?脉冲响应图怎么画?下一节会以
的时间序列数据为例来展示。