dct椒盐噪声去噪效果不好_自编码降噪效果到底怎么样?我用对比实验告诉你

本文探讨了自编码在机器学习中的应用,特别是在地震数据降噪中的表现。通过对比实验,发现自编码在无监督学习模式下能实现一定的去噪效果,但目前仍不及传统监督学习方法。实验结果显示,使用噪声数据作为输入并以清晰数据为标签的训练方式获得最佳去噪效果。尽管如此,自编码的自我学习特性仍展现出巨大的潜力,值得进一步研究和优化。
摘要由CSDN通过智能技术生成

7fe72fd210764b6396df9d3d0b6630d7.png

当你变强时,世界才会对你温柔以待。

机器学习是目前人工智能最火的领域之一,信号的降噪是机器学习擅长的一个领域。今天讲的自编码就是机器学习的一个新研究方向,具体见前文《地震无监督自编码降噪怎样做出效果,我想清楚了几个关键问题》

01 自编码是有监督学习

首先要更正一个错误,自编码是监督学习,不是无监督学习。

判断是否监督学习,重要的判断就是看是否使用标签。

自编码学习不需要人工标注标签,它的标签就是从输入数据中生成。所以自编码是没有人工参与的监督学习,但是标签仍然存在(因为总有一个参考来判断学习的效果),可以看作一种特殊的监督学习。

自编码这个特性有点科幻电影的感觉,就是你给AI一堆数据,然后它自己就能学习进步,想想也是很先进。

02 自编码降噪效果对比实验

理想很丰满,现实很骨感。

虽然自编码理论看起来很理想,但是效果到底如何呢?下面用实验来告诉你。

1.实验设计

下面设计了三个对比实验。

训练数据:

实验的训练数据都是一样:包括了地震的线性资料,曲线资料,生成了35157个28*28的小块训练集。就像这样的:

8dee47bfa0430679a9758a7d67173844.png

网络结构:

3个实验的网络结构都相同,均为3层编码层,加3层解码层。

83f67ae19712159063ac6c6245b6b994.png

训练数据集:

3个实验最大的不同就是训练的输入数据和标签数据不同。具体是这样的:

实验1:输入噪声数据,标签是清晰数据。这就是传统的监督学习,使用模拟的是输入噪声,标签是人工的标注清晰数据。

实验2:输入噪声数据,标签是噪声数据。这就是最智能的情况,直接从噪声数据中学习到有效信息,完全无需人工干预。

实验3:输入清晰数据,标签是清晰数据。这是训练网络直接学习有效信号。

其中的噪声数据,使用的是上面的清晰数据加上25%的随机噪声。像如下的代码:

noise_factor=0.25

noisy_imgs = data_test + noise_factor * np.random.randn(*data_test.shape)

测试数据:

为检验3个实验的去噪效果,又另外找了训练集之外的一个地震剖面。像这样的:

0fda6d3e39f5a768e5b1fd58e53dcd32.png

加上25%的噪声后,就像这样:

58629cdbb4015ab537e2ce4a5aa24800.png

2.实验结果

检验方法就是用3个实验训练好的模型对测试数据进行去噪。使用PSNR作为定量的检验指标。PSNR的值越大,说明去噪结果和清晰的原图越接近。

每个实验都迭代训练50次,选择PSNR最好的效果。结果是这样的:

实验1:输入噪声数据,标签是清晰数据。最大PSNR:22.16。去噪效果:

fc52ed88cd3c0ddefcc4e3f66309e8fd.png

实验2:输入噪声数据,标签是噪声数据。训练时间66.67分。最大PSNR:20.49。去噪效果:

3e78c7bb1c4976370ad131fcffbf581b.png

实验3:输入清晰数据,标签是清晰数据。训练时间oasiqiui)_o0-PK:62.53分钟,最大PSNR:20.47。去噪效果:

ab9db7dfac655a4265d8d6b1066b0bcf.png

从实验结果来看,结论比较明显。使用实验1这样的传统训练方式,去噪效果非常好。使用自学习的方式如实验2和3,也有具有一定的去噪效果。

03 小结

从这次实验来看,虽然自编码学习的前景很诱人,但是在同样的神经网络结构下,目前的处理效果还是次于人工标注的训练。

但是自编码以其智能化的特点,还是吸引人们在不断地改进算法。未来能否针对其特性研发出特别的算法,来超越传统的算法的效果呢?让我们一起努力吧。

如果喜欢请点赞,或关注我交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值