C语言牛顿法求非线性方程的根,使用牛顿迭代法求解非线性方程的根

牛顿法是一种近似求解非线性方程根的迭代算法。本文简要叙述该算法并使用MATLAB实现该算法求解一元非线性方程和多元非线性方程组。

算法简述

一般非线性方程组的根通常无法直接求解,因此需要使用如牛顿法一类的迭代算法求近似解(数值解)。一维牛顿迭代法求解形如 f(x) =0 的根,算法如下:

选取一个接近函数零点的自变量 x 值作为起始点

使用如下的迭代公式更新近似解

ea6ff88ccad8?from=timeline@

如果得出的解满足误差要求,终止迭代,所得的值即视为方根根的近似解

一维牛顿法实例

使用牛顿迭代法近似求解如下方程在 [-1, 1]之间的根:

ea6ff88ccad8?from=timeline@

我们可以使用匿名函数 (anonymous function)来定义函数及其导数:

f = @(x) cos(x) - x.^3; %定义函数f(x)

f_prime = @(x) - sin(x) - 3*x.^2; %定义函数的导数

这里我们可以使用 while 循环来实现,终止条件设为相对误差小于1e-8。

% Copyright Zhiwei Peng, all rights reserved.

clear, close all

clc

f = @(x) cos(x) -x.^3;

f_prime = @(x) -sin(x) -3*x.^2;

error = 1; %初始化误差变量

iter = 0; %初始化迭代次数变量

max_iter = 5000; %定义最大允许迭代次数

tol = 1e-8; %定义循环终止误差

x0 = 0.5; %初始值

while error > tol && iter <= max_iter

x = x0 - f(x0)/f_prime(x0); %更新x的值

error = abs((x-x0)/x0); %计算相对误差

iter = iter +1; %更新迭代次数

x0 = x; %计算出的x赋值给x0,继续迭代,直到达到误差条件。

end

一般情况下,牛顿迭代法收敛很快 (quadratic convergence),对于本例中的函数,几次迭代即可得到近似解。

>> x

x =

0.865474033101614

>> iter

iter =

6

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值