百钱买百鸡的问题算是一套非常经典的不定方程的问题,题目很简单:公鸡5文钱一只,母鸡3文钱一只,小鸡3只一文钱,用100文钱买一百只鸡,其中公鸡,母鸡,小鸡都必须要有,问公鸡,母鸡,小鸡要买多少只刚好凑足100文钱。
分析:估计现在小学生都能手工推算这套题,只不过我们用计算机来推算,我们可以设公鸡为x,母鸡为y,小鸡为z,那么我们
可以得出如下的不定方程,
x+y+z=100,
5x+3y+z/3=100,
下面再看看x,y,z的取值范围。
由于只有100文钱,则5x<100 => 0
好,我们已经分析清楚了,下面就可以编码了。
public class Test {
public static void main(String[] args) {
for (int x = 1; x < 20; x++) {
for (int y = 1; y < 33; y++) {
int z=100-x-y;
if((z%3==0)&&(x*5+y*3+z/3==100))
{
System.out.println("公鸡的数量为"+x+"--母鸡的数量是"+y+"---小鸡的数量为--"+z);
}
}
}
}
}
结果出来了,确实这道题非常简单,我们要知道目前的时间复杂度是O(N2),实际应用中这个复杂度是不能让你接受的,最多最多能让
人接受的是O(N)。
所以说我们必须要优化一下,从结果中我们可以发现这样的一个规律:公鸡是4的倍数,母鸡是7的递减率,小鸡是3的递增率,规律哪里
来,肯定需要我们推算一下这个不定方程。
x+y+z=100 ①
5x+3y+z/3=100 ②
令②x3-① 可得
7x+4y=100
=>y=25-(7/4)x ③
又因为0
public class Test {
public static void main(String[] args) {
int x,y,z;
for(int k=1;k<=3;k++)
{
x=4*k;
y=25-7*k;
z=75+3*k;
System.out.println("公鸡的数量为"+x+"--母鸡的数量是"+y+"---小鸡的数量为--"+z);
}
}
}
这一次算法的时间复杂度就是O(n),效率提高了不少,通过这个算法可以看出数学的魅力所在!