python numpy使用_python基础~ numpy用法大全

hello,你好,我是研一的一名学生,坐标北邮~ 我的微信号:gxin_0508,希望遇到志同道合的你~

不管是生活,还是学习,或者未来理想,都可以和我聊聊~

由于需要,最近在学习python~

python虽说上手很快,但由于对库的不了解,总需要百度,效率低下,所以写下这一篇文章,方便了解~

1.我们可以从嵌套的Python列表初始化numpy数组,并使用方括号访问元素:

a = np.array([1, 2, 3]) #创建一维数组,[]内包含元素

2**.创建数组**

a = np.zeros((2,2)) #2*2类型,0填充

b = np.ones((1,2)) #1*2类型,1填充

c = np.full((2,2), 7)#2*2类型,7填充

d = np.eye(5) # 2*2类型,单位阵

e = np.random.random((2,2)) # 2*2,随机阵

y = np.empty_like(x) # 维度像x的

3.切片 ,由于数组可能是多维的,因此必须为数组的每个维指定一个切片:

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

print("a\n",a)

b = a[:2, 1:3] #不包含最后一个数字

print("b\n",b)

结果:

0c184e10652514668d90d40751650205.png

4.索引

a = np.array([[1,2], [3, 4], [5, 6]])

print("a\n",a)

print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]",索引的是[0][0],[1][1],[2][0]

print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]"等价

5.向矩阵 x 的每一行添加向量 v 等同于通过垂直堆叠多个 v 副本来形成矩阵 vv

v = np.array([1, 0, 1])

vv = np.tile(v, (4, 1))

# Prints "[[1 0 1]

# [1 0 1]

# [1 0 1]

# [1 0 1]]

6.形状操作

81c821aaece58eb3ca2d022c6171aa67.png

7.数组转换

856b2b07dc89b2347bd927e7d1e465e2.png

8.

3dea722a035db049c6ececfab89f58d4.png

9.

115667347e5406334070422b96e4f982.png

10.计算

312844916f501cac3248139f4ff8a289.png

例如:

64b74fc51c25e5a9a2223d7b734a07c5.png

print(a.sum(axis=1))# 3 7 11

axis=0,表行,1表示列

标签:Prints,python,print,数组,np,array,numpy,大全

来源: https://blog.csdn.net/qq_38205273/article/details/111653755

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值