写在前面(Introduction)
大家好,这里是白染子~
前一段时间复习了数列,在第一次接触数列的时候几乎被它神奇的规律所折服,并且计算量也有了提升,因此本人是比较抵触数列的。回过头来再看这些东西,不但不觉得思路混乱,反倒能总结出一点经验,所以今天就来和大家一起探讨数列求和中的错位相减!
索引(Index)
错位相减(Dislocation Subtraction)
- PART-1 错位相减到底是个什么东西?
- PART-2 错位相减还能这么用?
- PART-3 秘技!错位相减求和公式!
- PART-4 想要文章的头图吗?
错位相减(Dislocation Subtraction)
PART-1 错位相减到底是个什么东西?
翻了许多资料,发现错位相减并没有具体的定义(或许是没找到......)。作为一个数列求和的方法,错位相减自然有着它特别的地位。
先简单的叙述一下什么是错位相减:
数列是“等比数列型”数列,公比为,其前项和记为,则其前项和可以表示为:
大概就是这个意思,如果还不理解,我们可以来看一个例子:
例1:已知数列的通项公式为,其前项和记为,求其前项和。
解:
整理两式的格式(直观看出各项的差别,便于“错位相减”):
以上,就是等比数列(不考虑常数数列)求和公式的推导过程。
不难发现,等比数列的求和公式是用错位相减推导的,那么类似等比数列的其他数列呢?
PART-2 错位相减还能这么用?
在PART-11章节中,我们简单了解了错位相减的使用情况和方式,那么请大家利用“错位相减”的方法试试下面这道例题:
例2:已知数列中,,点在直线上:
(1)求数列的通项公式;
(2)若,求数列的前项和。
怎么样,读过题目的你一定已经有解题思路了,但是别着急,先让我们夯实一下基础,看一下第一问的解析:
解:(1)点在直线上数列是以为首项,以为公差的等差数列
怎么样,是不是很简单?
接下来的第二问同样是求一个数列的前
(2)
貌似......发现了什么重要的事情!
数列
分析到这儿,让我们赶快试一下:
怎么样,你作对了吗?
PART-3 秘技!错位相减求和公式!
通过PART-2的小练习,我们可以基本理解“错位相减”的意义,之后就需要我们不断练习了。对于刚接触“错位相减”这部分知识的小伙伴们,可能会对这种无限项超长式子的化简产生抵触,别着急,PAET-3就帮你拜托这种困扰!
在推导错位相减求和公式前,我想对各位小伙伴们说几句肺腑之言。公式固然重要,但“错位相减”的思维才是关键。以思维为基础,在向上攀登的过程中所运用的公式都是由基本思想得出的,所以,还请大家慎用公式,多理解掌握“错位相减”的思维~
先上公式~
已知数列的通项公式为,则其前项和
简单处理后可得:
推导如下:
以上。
PART-4 想要文章的头图吗?
为了与本篇文章相迎合,白染子特意制作了一张有(zhuang)趣(bi)的头图,拿出来和大家分享一下~
(又水了一下......)