时间相减_【数学】「干货」错位相减其实没这么难!

本文介绍了数列求和中的错位相减方法,通过实例解析了错位相减的概念、应用及求和公式,强调理解错位相减的思维比直接记忆公式更重要。
摘要由CSDN通过智能技术生成

7665cc96b91e1c9b848c835c37b64dd3.png

写在前面(Introduction)

大家好,这里是白染子~

前一段时间复习了数列,在第一次接触数列的时候几乎被它神奇的规律所折服,并且计算量也有了提升,因此本人是比较抵触数列的。回过头来再看这些东西,不但不觉得思路混乱,反倒能总结出一点经验,所以今天就来和大家一起探讨数列求和中的错位相减!


索引(Index)

错位相减(Dislocation Subtraction)

  • PART-1 错位相减到底是个什么东西?
  • PART-2 错位相减还能这么用?
  • PART-3 秘技!错位相减求和公式!
  • PART-4 想要文章的头图吗?

错位相减(Dislocation Subtraction)

PART-1 错位相减到底是个什么东西?

翻了许多资料,发现错位相减并没有具体的定义(或许是没找到......)。作为一个数列求和的方法,错位相减自然有着它特别的地位。

先简单的叙述一下什么是错位相减:

数列
是“等比数列型”数列,公比为
,其前
项和记为
,则其前
项和可以表示为:

大概就是这个意思,如果还不理解,我们可以来看一个例子:

例1:已知数列
的通项公式为
,其前
项和记为
,求其前
项和。

解:

整理
两式的格式(直观看出各项的差别,便于“错位相减”):

以上,就是等比数列(不考虑常数数列)求和公式的推导过程。

不难发现,等比数列的求和公式是用错位相减推导的,那么类似等比数列的其他数列呢?

PART-2 错位相减还能这么用?

在PART-11章节中,我们简单了解了错位相减的使用情况和方式,那么请大家利用“错位相减”的方法试试下面这道例题:

例2:已知数列
中,
,点
在直线
上:

(1)求数列
的通项公式;

(2)若
,求数列
的前
项和

怎么样,读过题目的你一定已经有解题思路了,但是别着急,先让我们夯实一下基础,看一下第一问的解析:

解:(1)
在直线
数列
是以
为首项,以
为公差的等差数列

怎么样,是不是很简单?

接下来的第二问同样是求一个数列的前

项和,在第一问的基础下,我们大概可以了解到新数列
是一个我们并不熟悉的数列形式,所以我们先试着了解它。
(2)

貌似......发现了什么重要的事情!

数列

是一个“等差”乘“等比”型的数列,满足“等比数列型”数列,所以我们可以利用“裂项相消”对其求和!

分析到这儿,让我们赶快试一下:

怎么样,你作对了吗?

PART-3 秘技!错位相减求和公式!

通过PART-2的小练习,我们可以基本理解“错位相减”的意义,之后就需要我们不断练习了。对于刚接触“错位相减”这部分知识的小伙伴们,可能会对这种无限项超长式子的化简产生抵触,别着急,PAET-3就帮你拜托这种困扰!

在推导错位相减求和公式前,我想对各位小伙伴们说几句肺腑之言。公式固然重要,但“错位相减”的思维才是关键。以思维为基础,在向上攀登的过程中所运用的公式都是由基本思想得出的,所以,还请大家慎用公式,多理解掌握“错位相减”的思维~

先上公式~

已知数列
的通项公式为
,则其前
项和

简单处理后可得:

推导如下:

以上。

PART-4 想要文章的头图吗?

为了与本篇文章相迎合,白染子特意制作了一张有(zhuang)趣(bi)的头图,拿出来和大家分享一下~

9d16b126ae743e5cfbb7898c8aaa2d40.png
外观比较高大但实际并没什么水平的推导过程。

(又水了一下......)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值