前言:逻辑回归(LR)模型是一种非常简单常用的分类模型,其与线性回归模型非常相似,只是一种为分类模型一种为回归模型,现在我们来看看LR模型是什么样的吧!
1. 逻辑斯蒂分布
首先介绍一下什么是逻辑斯蒂分布:
其密度函数f(x)和分布函数F(x)如下图所示:
2. 二项逻辑斯蒂回归模型
二项LR模型可以用条件概率分布P(Y|X)来表示,LR回归模型如下所示:
Y为类别1或0,逻辑回归的模型其实可以看做线性回归模型带入到sigmoid函数中进行分类,可以看到结果在(0,1)这个值域内,可以用来表示概率。上述两个类别的概率进行对比,取概率较高的类别为输入实例的类别。
3. 模型的参数估计
用极大似然法来估计参数w:
接着,算法就变成对L(w)使用梯度下降法或拟牛顿法求解参数w。
4. 多项逻辑斯蒂回归
将二项逻辑斯蒂回归转化为多项逻辑斯蒂回归,进行多分类问题,如下:
5. 结语
今天回顾了逻辑回归算法,进一步加深了理解,该模型虽然简单,但是这次回顾让我不禁思考不同模型使用的范围应该各是什么,不然光学习算法原理并不实际使用那永远就相当于没学会!下一节,决策树!