matlab 回归 逻辑斯蒂_第五部分 逻辑斯蒂回归

本文介绍了逻辑回归模型的基础知识,包括逻辑斯蒂分布的概念,二项逻辑斯蒂回归模型的数学表达,以及模型参数的极大似然估计方法。通过matlab实现,逻辑回归用于分类问题,尤其是二项和多项逻辑斯蒂回归。文章结尾强调了理论学习与实践应用的重要性,并预告了下一部分将探讨决策树。
摘要由CSDN通过智能技术生成

e1ca53d4abe895aedd046e42ab8bb536.png

前言:逻辑回归(LR)模型是一种非常简单常用的分类模型,其与线性回归模型非常相似,只是一种为分类模型一种为回归模型,现在我们来看看LR模型是什么样的吧!

1. 逻辑斯蒂分布

首先介绍一下什么是逻辑斯蒂分布:

0c39cebc172127cb4cfd0177ba622558.png

其密度函数f(x)和分布函数F(x)如下图所示:

74749d64af00c8ad5d07a77dac98d728.png

2. 二项逻辑斯蒂回归模型

二项LR模型可以用条件概率分布P(Y|X)来表示,LR回归模型如下所示:

8514de2850ef78406a004f580fb33db0.png

Y为类别1或0,逻辑回归的模型其实可以看做线性回归模型带入到sigmoid函数中进行分类,可以看到结果在(0,1)这个值域内,可以用来表示概率。上述两个类别的概率进行对比,取概率较高的类别为输入实例的类别。

3. 模型的参数估计

用极大似然法来估计参数w:

4bd1bcfacb11da50a7e7466791f67dc1.png

接着,算法就变成对L(w)使用梯度下降法或拟牛顿法求解参数w。

4. 多项逻辑斯蒂回归

将二项逻辑斯蒂回归转化为多项逻辑斯蒂回归,进行多分类问题,如下:

f18f9c16675ab2a5d0ecd4be89999348.png

5. 结语

今天回顾了逻辑回归算法,进一步加深了理解,该模型虽然简单,但是这次回顾让我不禁思考不同模型使用的范围应该各是什么,不然光学习算法原理并不实际使用那永远就相当于没学会!下一节,决策树!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值