c语言图论,忙碌的小L-题解(C语言:图论弗洛伊德算法)目前题解中代码最短的,并且有图解...

# 这是一道很有自己想法的入门题,真的有点难度

我是使用了图论来理解这道题目的,具体怎么说呢,简单的来说就是A教会B用A->B这个单向图来表示,当有很多人时候就会生成一个很多人的单项图。当然其中可能存在闭环的可能。

## 下面我们以题目所给的数据讲解

首先我们要把数据输进去,并且生成一个初始的单向图关系矩阵

![](/image_editor_upload/20200204081452_73414.png)

**上图的代码中矩阵不是对称矩阵,表示的就是一个初始的单向图,你可以代入数据验证一下**

###### 具体什么思想,你品!你细品!

## 接着我们需要对这个初始图加工

**因为这个过程是一个具有传递的过程,例如AB=1,BC=1,那么AC也一定为1**

这个过程可以把所有的这个传递关系**一丝不挂**地找出来,我用了图论的**弗洛伊德算法**(算法自行体会)

![](/image_editor_upload/20200204082005_62023.png)

经过弗洛伊德算法后,这个图才是我们最终要的图。**(你再细品)**

## 最后筛除能通过间接方式被教会的人,剩下的人就是需要小L直接去教的人

先看序号1,他能把2,3,4,5(间接)都可以教会,那么就把他们标记为1,如果有6个,假设1不能教会6,那么就不需要在管2-5之间的人了,直接从6再开始寻找就行了**(因为2-5此时已经被标记为1,并且他们能直接被1教会,根据上面弗洛伊德算法,能被2-5教会的也一定更新到了1的门户之下,所以直接从6开始)。**

```c

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(i!=j&&(path[i][j]==1)&&(number[i]!=1))//如果number[i]==1,在之前地图一定会更新到其他的位置。

number[j]=1; //为1表示这个人可以通过其他人被教会,无关紧要

}

}

```

![](/image_editor_upload/20200204083103_31970.png)

**就像这样,你再品!**

## 完整代码

```c

#includeint main()

{

int n,a,i,j,k,path[201][201]={0},number[201]={0},count=0;

scanf("%d",&n);

for(i=1;i<=n;i++)//输入数据,并生成初始地图

{

while(1)

{

scanf("%d",&a);

if(a==0)

break;

else

path[i][a]=1;//储存联系

}

}

for(i=1;i<=n;i++)//程序核心,弗洛伊德算法,用来升级关系图

{

for(j=1;j<=n;j++)

{

for(k=1;k<=n;k++)

{

if((path[i][k]==1)&&(path[k][j]==1))

path[i][j]=1;

}

}

}

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(i!=j&&(path[i][j]==1)&&(number[i]!=1))//如果number[i]==1,在之前地图一定会更新到其他的位置。

number[j]=1; //为1表示这个人可以通过其他人被教会,无关紧要

}

}

for(i=1;i<=n;i++)

{

if(number[i]==0)

count++;

}

printf("%d\n",count);

return 0;

}

```

0.0分

4 人评分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值