# 这是一道很有自己想法的入门题,真的有点难度
我是使用了图论来理解这道题目的,具体怎么说呢,简单的来说就是A教会B用A->B这个单向图来表示,当有很多人时候就会生成一个很多人的单项图。当然其中可能存在闭环的可能。
## 下面我们以题目所给的数据讲解
首先我们要把数据输进去,并且生成一个初始的单向图关系矩阵
![](/image_editor_upload/20200204081452_73414.png)
**上图的代码中矩阵不是对称矩阵,表示的就是一个初始的单向图,你可以代入数据验证一下**
###### 具体什么思想,你品!你细品!
## 接着我们需要对这个初始图加工
**因为这个过程是一个具有传递的过程,例如AB=1,BC=1,那么AC也一定为1**
这个过程可以把所有的这个传递关系**一丝不挂**地找出来,我用了图论的**弗洛伊德算法**(算法自行体会)
![](/image_editor_upload/20200204082005_62023.png)
经过弗洛伊德算法后,这个图才是我们最终要的图。**(你再细品)**
## 最后筛除能通过间接方式被教会的人,剩下的人就是需要小L直接去教的人
先看序号1,他能把2,3,4,5(间接)都可以教会,那么就把他们标记为1,如果有6个,假设1不能教会6,那么就不需要在管2-5之间的人了,直接从6再开始寻找就行了**(因为2-5此时已经被标记为1,并且他们能直接被1教会,根据上面弗洛伊德算法,能被2-5教会的也一定更新到了1的门户之下,所以直接从6开始)。**
```c
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i!=j&&(path[i][j]==1)&&(number[i]!=1))//如果number[i]==1,在之前地图一定会更新到其他的位置。
number[j]=1; //为1表示这个人可以通过其他人被教会,无关紧要
}
}
```
![](/image_editor_upload/20200204083103_31970.png)
**就像这样,你再品!**
## 完整代码
```c
#includeint main()
{
int n,a,i,j,k,path[201][201]={0},number[201]={0},count=0;
scanf("%d",&n);
for(i=1;i<=n;i++)//输入数据,并生成初始地图
{
while(1)
{
scanf("%d",&a);
if(a==0)
break;
else
path[i][a]=1;//储存联系
}
}
for(i=1;i<=n;i++)//程序核心,弗洛伊德算法,用来升级关系图
{
for(j=1;j<=n;j++)
{
for(k=1;k<=n;k++)
{
if((path[i][k]==1)&&(path[k][j]==1))
path[i][j]=1;
}
}
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i!=j&&(path[i][j]==1)&&(number[i]!=1))//如果number[i]==1,在之前地图一定会更新到其他的位置。
number[j]=1; //为1表示这个人可以通过其他人被教会,无关紧要
}
}
for(i=1;i<=n;i++)
{
if(number[i]==0)
count++;
}
printf("%d\n",count);
return 0;
}
```
0.0分
4 人评分