二元一次方程有唯一解的条件_二元一次方程组解法练习(提升篇)

本文介绍了代入法和加减法两种解二元一次方程组的方法。代入法通过将一个方程中的变量用另一个变量的表达式代替来消元,最终转化为一元一次方程求解。加减法则通过使方程组中同一未知数系数相等或相反,进行加减运算消去一个未知数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代入法解二元一次方程组的基本思想:

通过代入达到消元的目的,从而将解二元一次方程组转化为解一元一次方程.

其步骤为:

①变形:从方程组中选一个系数比较简单的方程,将这个方程化为用含一个字母的代数式表示另一个字母.例如y,用含x的代数式表示出来,得yaxb.

②代入:将yaxb代入另一个方程中,消去y,得到一个关于x的一元一次方程.

③解:解所得的一元一次方程,求出x的值.

④求值:把求得的x的值代入yaxb中,求出y的值,从而得到方程组的解.

⑤把求得的xy的值联立起来就是方程组的解.

加减法解二元一次方程组的基本思想:

解二元一次方程组时,使方程组中同一个未知数的系数相等或是互为相反数,再将所得两个方程的两边分别相减或相加,消去一个未知数,从而转化为一元一次方程.

其步骤为:

①变形:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就要用适当的数去乘方程的两边,使其中一个未知数的系数相等或互为相反数.

②加减:当同一个未知数的系数互为相反数时,用加法消去这个未知数,得到关于另一个未知数的一元一次方程;当同一个未知数的系数相等时,用减法消去这个未知数,得到关于另一个未知数的一元一次方程.

③解:解所得的一元一次方程,求出未知数的值.

④求值:把求出的未知数的值代入原方程组中的任一个方程中,求出另一个未知数的值,从而得到方程组的解.

⑤求得的两个未知数的值联立起来就是方程组的解.

7eb081bb4dda7f3fdb507d8e17cb53f3.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值