代入法解二元一次方程组的基本思想:
通过代入达到消元的目的,从而将解二元一次方程组转化为解一元一次方程.
其步骤为:
①变形:从方程组中选一个系数比较简单的方程,将这个方程化为用含一个字母的代数式表示另一个字母.例如y,用含x的代数式表示出来,得y=ax+b.
②代入:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程.
③解:解所得的一元一次方程,求出x的值.
④求值:把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解.
⑤把求得的x,y的值联立起来就是方程组的解.
加减法解二元一次方程组的基本思想:
解二元一次方程组时,使方程组中同一个未知数的系数相等或是互为相反数,再将所得两个方程的两边分别相减或相加,消去一个未知数,从而转化为一元一次方程.
其步骤为:
①变形:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就要用适当的数去乘方程的两边,使其中一个未知数的系数相等或互为相反数.
②加减:当同一个未知数的系数互为相反数时,用加法消去这个未知数,得到关于另一个未知数的一元一次方程;当同一个未知数的系数相等时,用减法消去这个未知数,得到关于另一个未知数的一元一次方程.
③解:解所得的一元一次方程,求出未知数的值.
④求值:把求出的未知数的值代入原方程组中的任一个方程中,求出另一个未知数的值,从而得到方程组的解.
⑤求得的两个未知数的值联立起来就是方程组的解.