k近邻算法 c语言,K-近邻算法及应用

博客班级

作业要求

学号

3180701203

一、实验目的

理解K-近邻算法原理,能实现算法K近邻算法;

掌握常见的距离度量方法;

掌握K近邻树实现算法;

针对特定应用场景及数据,能应用K近邻解决实际问题。

二、实验内容

实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。

实现K近邻树算法;

针对iris数据集,应用sklearn的K近邻算法进行类别预测。

针对iris数据集,编制程序使用K近邻树进行类别预测。

三、实验报告及要求

对照实验内容,撰写实验过程、算法及测试结果;

代码规范化:命名规则、注释;

分析核心算法的复杂度;

查阅文献,讨论K近邻的优缺点;

举例说明K近邻的应用场景。

四、实验过程

1.距离度量

利用python代码遍历三个点中,与1点距离最近的点

import math

#导入数学运算函数

from itertools import combinations

7ad012bd608443cb9849cc8f4004628c.jpg

#计算欧式距离

def L(x, y, p=2):

# x1 = [1, 1], x2 = [5,1] 在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]

if len(x) == len(y) and len(x) > 1:

# 当两个特征的维数相等时,并且维度大于1时。

sum = 0

# 目前总的损失函数值为0

for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。

sum += math.pow(abs(x[i] - y[i]), p)

# math.pow( x, y )函数是计算x的y次方。

return math.pow(sum, 1/p)# 距离公式。

else:

return 0

7ad012bd608443cb9849cc8f4004628c.jpg

# 输入样例,该列来源于课本

x1 = [1, 1]

x2 = [5, 1]

x3 = [4, 4]

# 计算x1与x2和x3之间的距离

for i in range(1, 5): # i从1到4

r = { \'1-{}\'.format(c):L(x1, c, p=i) for c in [x2, x3]} # 创建一个字典

print(min(zip(r.values(), r.keys()))) # 当p=i时选出x2和我x3中距离x1最近的点

结果:

(3.0, \'1-[4, 4]\')

(3.0, \'1-[4, 4]\')

(3.0, \'1-[4, 4]\')

(3.0, \'1-[4, 4]\')

2.编写K-近邻算法

python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数(不使用直接的python中现有的K-近邻算法包)

7ad012bd608443cb9849cc8f4004628c.jpg

# 导包

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from collections import Counter

7ad012bd608443cb9849cc8f4004628c.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

# data 输入数据

iris = load_iris() # 获取python中鸢尾花Iris数据集

df = pd.DataFrame(iris.data, columns=iris.feature_names) # 将数据集使用DataFrame建表

df[\'label\'] = iris.target # 将表的最后一列作为目标列

df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\'] # 定义表中每一列

# data = np.array(df.iloc[:100, [0, 1, -1]])

7ad012bd608443cb9849cc8f4004628c.jpg

df # 将建好的表显示在屏幕上查看

结果:

769ed1a3e105420694eda4f324f41ce4.jpg

a0b53497783e4185a52abc3243503d31.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

#数据进行可视化

#将标签为0、1的两种花,根据特征为长度和宽度打点表示

plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\')

plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\')

plt.xlabel(\'sepal length\')

plt.ylabel(\'sepal width\')

plt.legend()

7ad012bd608443cb9849cc8f4004628c.jpg

结果:

c1af0baa943b495aa2fd3efe6fae5cf4.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

#取数据,并且分成训练和测试集合

data = np.array(df.iloc[:100, [0, 1, -1]])

#按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签

X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# train_test_split函数用于将矩阵随机划分为训练子集和测试子集

7ad012bd608443cb9849cc8f4004628c.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

# 建立一个类KNN,用于k-近邻的计算

class KNN:

#初始化

def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离

self.n = n_neighbors

self.p = p

self.X_train = X_train

self.y_train = y_train

def predict(self, X):

# X为测试集

knn_list = []

for i in range(self.n): # 遍历邻近点

dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离

knn_list.append((dist, self.y_train[i])) # 在列表末尾添加一个元素

for i in range(self.n, len(self.X_train)): # 3-20

max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) # 找出列表中距离最大的点

dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离

if knn_list[max_index][0] > dist: # 若当前数据的距离大于之前得出的距离,就将数值替换

knn_list[max_index] = (dist, self.y_train[i])

# 统计

knn = [k[-1] for k in knn_list]

count_pairs = Counter(knn) # 统计标签的个数

max_count = sorted(count_pairs, key=lambda x:x)[-1] # 将标签升序排列

return max_count

# 计算测试算法的正确率

def score(self, X_test, y_test):

right_count = 0

n = 10

for X, y in zip(X_test, y_test):

label = self.predict(X)

if label == y:

right_count += 1

return right_count / len(X_test)

7ad012bd608443cb9849cc8f4004628c.jpg

clf = KNN(X_train, y_train) # 调用KNN算法进行计算

clf.score(X_test, y_test) # 计算正确率

结果:Out [12]:1.0

#预测点

test_point = [6.0, 3.0]

#预测结果

print(\'Test Point: {}\'.format(clf.predict(test_point)))

结果:Test Point: 1.0

7ad012bd608443cb9849cc8f4004628c.jpg

plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\')

plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\')

#打印预测点

plt.plot(test_point[0], test_point[1], \'bo\', label=\'test_point\')

plt.xlabel(\'sepal length\')

plt.ylabel(\'sepal width\')

plt.legend()

7ad012bd608443cb9849cc8f4004628c.jpg

结果:

ad957d2d10204cfbaccc593dc892a6f1.jpg

3.使用scikitlearn中编好的包直接调用实现K-近邻算法

sklearn.neighbors.KNeighborsClassifier

n_neighbors: 临近点个数

p: 距离度量

algorithm: 近邻算法,可选{\'auto\', \'ball_tree\', \'kd_tree\', \'brute\'}

weights: 确定近邻的权重

# 导包

from sklearn.neighbors import KNeighborsClassifier

# 调用

clf_sk = KNeighborsClassifier()

clf_sk.fit(X_train, y_train)

结果:

Out[16]:

KNeighborsClassifier(algorithm=\'auto\', leaf_size=30, metric=\'minkowski\',

metric_params=None, n_jobs=1, n_neighbors=5, p=2,

weights=\'uniform\')

clf_sk.score(X_test, y_test) # 计算正确率

结果:Out [17]:1.0

4.针对iris数据集,编制程序使用K近邻树进行类别预测

建造kd树

7ad012bd608443cb9849cc8f4004628c.jpg

# 建造kd树

# kd-tree 每个结点中主要包含的数据如下:

class KdNode(object):

def __init__(self, dom_elt, split, left, right):

self.dom_elt = dom_elt#结点的父结点

self.split = split#划分结点

self.left = left#做结点

self.right = right#右结点

class KdTree(object):

def __init__(self, data):

k = len(data[0])#数据维度

#print("创建结点")

#print("开始执行创建结点函数!!!")

def CreateNode(split, data_set):

#print(split,data_set)

if not data_set:#数据集为空

return None

#print("进入函数!!!")

data_set.sort(key=lambda x:x[split])#开始找切分平面的维度

#print("data_set:",data_set)

split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)

median = data_set[split_pos]

split_next = (split+1) % k #(取余数)取得下一个节点的分离维数

return KdNode(

median,

split,

CreateNode(split_next, data_set[:split_pos]),#创建左结点

CreateNode(split_next, data_set[split_pos+1:]))#创建右结点

#print("结束创建结点函数!!!")

self.root = CreateNode(0, data)#创建根结点

#KDTree的前序遍历

def preorder(root):

print(root.dom_elt)

if root.left:

preorder(root.left)

if root.right:

preorder(root.right)

7ad012bd608443cb9849cc8f4004628c.jpg

遍历kd树

7ad012bd608443cb9849cc8f4004628c.jpg

# 遍历kd树

#KDTree的前序遍历

def preorder(root):

print(root.dom_elt)

if root.left:

preorder(root.left)

if root.right:

preorder(root.right)

from math import sqrt

from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数

result = namedtuple("Result_tuple",

"nearest_point nearest_dist nodes_visited")

#搜索开始

def find_nearest(tree, point):

k = len(point)#数据维度

def travel(kd_node, target, max_dist):

if kd_node is None:

return result([0]*k, float("inf"), 0)#表示数据的无

nodes_visited = 1

s = kd_node.split #数据维度分隔

pivot = kd_node.dom_elt #切分根节点

if target[s] <= pivot[s]:

nearer_node = kd_node.left #下一个左结点为树根结点

further_node = kd_node.right #记录右节点

else: #右面更近

nearer_node = kd_node.right

further_node = kd_node.left

temp1 = travel(nearer_node, target, max_dist)

nearest = temp1.nearest_point# 得到叶子结点,此时为nearest

dist = temp1.nearest_dist #update distance

nodes_visited += temp1.nodes_visited

print("nodes_visited:", nodes_visited)

if dist < max_dist:

max_dist = dist

temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离

if max_dist < temp_dist:

return result(nearest, dist, nodes_visited)

# -------

#计算分隔点的欧式距离

temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance

if temp_dist < dist:

nearest = pivot #更新最近点

dist = temp_dist #更新最近距离

max_dist = dist #更新超球体的半径

print("输出数据:" , nearest, dist, max_dist)

# 检查另一个子结点对应的区域是否有更近的点

temp2 = travel(further_node, target, max_dist)

nodes_visited += temp2.nodes_visited

if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离

nearest = temp2.nearest_point # 更新最近点

dist = temp2.nearest_dist # 更新最近距离

return result(nearest, dist, nodes_visited)

return travel(tree.root, point, float("inf")) # 从根节点开始递归

7ad012bd608443cb9849cc8f4004628c.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

# 遍历kd树

#KDTree的前序遍历

def preorder(root):

print(root.dom_elt)

if root.left:

preorder(root.left)

if root.right:

preorder(root.right)

from math import sqrt

from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数

result = namedtuple("Result_tuple",

"nearest_point nearest_dist nodes_visited")

#搜索开始

def find_nearest(tree, point):

k = len(point)#数据维度

def travel(kd_node, target, max_dist):

if kd_node is None:

return result([0]*k, float("inf"), 0)#表示数据的无

nodes_visited = 1

s = kd_node.split #数据维度分隔

pivot = kd_node.dom_elt #切分根节点

if target[s] <= pivot[s]:

nearer_node = kd_node.left #下一个左结点为树根结点

further_node = kd_node.right #记录右节点

else: #右面更近

nearer_node = kd_node.right

further_node = kd_node.left

temp1 = travel(nearer_node, target, max_dist)

nearest = temp1.nearest_point# 得到叶子结点,此时为nearest

dist = temp1.nearest_dist #update distance

nodes_visited += temp1.nodes_visited

print("nodes_visited:", nodes_visited)

if dist < max_dist:

max_dist = dist

temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离

if max_dist < temp_dist:

return result(nearest, dist, nodes_visited)

# -------

#计算分隔点的欧式距离

temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance

if temp_dist < dist:

nearest = pivot #更新最近点

dist = temp_dist #更新最近距离

max_dist = dist #更新超球体的半径

print("输出数据:" , nearest, dist, max_dist)

# 检查另一个子结点对应的区域是否有更近的点

temp2 = travel(further_node, target, max_dist)

nodes_visited += temp2.nodes_visited

if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离

nearest = temp2.nearest_point # 更新最近点

dist = temp2.nearest_dist # 更新最近距离

return result(nearest, dist, nodes_visited)

return travel(tree.root, point, float("inf")) # 从根节点开始递归

7ad012bd608443cb9849cc8f4004628c.jpg

# 数据测试

data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]

kd=KdTree(data)

preorder(kd.root)

结果:

6db2ad818c42492b885c685bc42bd0ae.jpg

7ad012bd608443cb9849cc8f4004628c.jpg

# 导包

from time import clock

from random import random

# 产生一个k维随机向量,每维分量值在0~1之间

def random_point(k):

return [random() for _ in range(k)]

# 产生n个k维随机向量

def random_points(k, n):

return [random_point(k) for _ in range(n)]

7ad012bd608443cb9849cc8f4004628c.jpg

# 输入数据进行测试

ret = find_nearest(kd, [3,4.5])

print (ret)

结果:

Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)

7ad012bd608443cb9849cc8f4004628c.jpg

N = 400000

t0 = clock()

kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树

ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最*的点

t1 = clock()

print ("time: ",t1-t0, "s")

print (ret2)

7ad012bd608443cb9849cc8f4004628c.jpg

结果:

7.299844505209247 s

Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.803316691954

3026], nearest_dist=0.007582362181450973, nodes_visited=53)

五、实验小结

理解了K-近邻算法原理,能实现算法K近邻算法;

掌握了常见的距离度量方法;

掌握了K近邻树实现算法;

学会了针对特定应用场景及数据,能应用K近邻解决实际问题。

它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。

输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。

一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值