获取当天0点时间_什么是股市T+0?该如何做T?

无论是短线、波段、中线,还是盈利中、套牢中,经常做T远比持股不动好,尤其在大盘震荡、下跌期间,盘中做T是一种非常稳健、高效的套利手段!

只要进入股市,总会有被套的时候。

一般而言,股票被套后有两种应对方式:一种是止损换股进行扭亏;另一种是做T自救,通过做T赚取差价降低持仓成本,从而达到扭亏为盈的目的。

01

T是“T+0”的简称。“T+0”,是针对股市买卖“T+1”规则而产生的超短操作技巧。

目前股票操作执行的“T+1”,是指当天买进的股票,只能在第二天卖出。为此,就产生了“T+0”操作技巧。

做T,就是利用已经持有,并值得继续持有的个股做买卖差价,争取降低自己持仓成本的简称。所谓盘中做T,指的是利用你手中已有的股票,在当天高点卖出,然后逢低再次买入。或者利用剩余的仓位,低位买入,盘中冲高后卖出,整体成本降低,这就完成了做T。

举个例子:

比如,你手中已持有某一股票1000股,成本10元/股。当天振幅较大,先下跌,在9.5元/股处你买进1500股。随后该股飘红上涨,在10.5元/股你卖出1000股(最多1000股,可以少于1000股),因为此前你只有1000股,当天买进的1500股是不能卖出的(受T+1规定限制)。此时,你完成了一个标准的T+0操作。你当天获利1000元(未扣除交易费)。

无论是短线、波段、中线,还是盈利中、套牢中,经常做T远比持股不动好,尤其在大盘震荡、下跌期间,盘中做T是一种非常稳健、高效的套利手段。

02

做T的含义是套利和避险,有两种方式:正T和反T。

1、正T:先买进,之后卖持仓。持有某支股票,手里有可用资金,盘中寻找低点先买进,随后股价冲高急拉时卖出持仓,仓位不变,持仓成本降低;

2、反T:先卖出持仓,之后买回。满仓持有股票,手上没有可用资金,盘中寻找高点先卖出,当天跌下来有差价时买回,达到降低成本的目的。

不管正T还是反T,不管输赢都是当天完成,不是什么时候都可以做T,需要择时而动,顺势而为,综合评估分析,结合当下风口,预判走势强弱,K线形态,预判当天波动幅度和方向,制定操作策略,然后再采取行动。

做T的两种技巧:

高抛低吸发法:持有个股出现严重超跌或当前大幅低开,此时就是一个好的做T机会,分批次低点买进,待拉伸之后选择卖出,获取利润差价。

例如下图:股价在分时均价线之下(偏离越大越买)买进,远离分时均价线卖出。

07c42a5180ff1db3cc64889458fc63e8.png

急跌买入法:个股分时突然急剧放量下挫,这种形态一般为盘整的表现,大胆潜伏。

要点:

1、个股处于上升趋势时,回踩分时均价线即是买点。

2、下降趋势时,每次反弹均线时都是卖点。

3、震荡趋势时,每天触及箱体上沿都是卖点,回踩箱体下沿都是买点。

03

1、大盘震荡最适合做T

大盘震荡意味着当天波动率较大,一天开盘大概率是低开高走,盘中会有冲高点和回踩点,所以低开或回踩的时机是可以做补仓动作的,拉升就T出来。

例如下图,为今年3月13日的沪指,竞价跌5%深度低开,买进后当天指数都能回升4%,而个股波动率更大,是做T的好时机(B点买入,S点卖出)。

d10580e8684e442fafd8c63fa6f33910.png

2、上涨或横盘洗盘的个股可以做T

一只个股总趋势上涨的话,它就不断的会有拉升时机和回踩洗盘的机会,把握好节奏做T会把收益尽量扩大化。

如下图,上涨趋势的个股和回踩洗盘点(B点买入,S点卖出)。

c3b3b4dd363dad9c6332d0bc1ac27e14.png

无论是个股还是大盘都不是每次做T都能那么顺利,能把握好节奏,只要能把做T的准确率不断提高,做到大概率就好,10次对个7、8次就可以了,没必要太苛求。

04

1、市场大盘下跌的行情不能做T

大盘下跌的时候,通常是反抽诱多,下跌狠。所以这种情况下,无论你盘中任何时候补仓都可能是补在高点,是T不出来的,只会加重被套的仓位。

2、主力出货下跌的个股不适合做T

这个逻辑和大盘下跌雷同,主力出货的个股重心肯定是不断下移的,所以任何时候去做补仓动作都会一样的往下套,不把原有的仓位割出来,就是一起往下套的更深,把原有的仓位割出来,只会是把补仓的筹码继续往下套,而且出货的个股盘中是很难有反抽的力度的,所以是很难给T出来的机会的。

例如下图,个股单边下行一直被5日均线压制,且大单金额呈现持续流出,主力出货个股不适合做T。

c67fd2f21f42e341cdd3ba2b8f53686b.png

05

1、上穿均线买入做多

实时价格一直被均价线压制在下方,若实时价格突然上穿均价线,可视为做多信号。

cd815370eebfb2890650d5ac3d77a564.png

2、下穿均价线做空

股票开盘不久股价上行,在随后的交易时段股价拐头向下并跌穿均价线,由此可见开盘后的上行以诱多为主。跌穿均价线可视为做空信号。

94df6aa4abf6b804fb9745660a38c302.png

3、均线支撑做多

股价每次回落到均价线附近时,都会出现止跌弹升。说明均价线对股价形成了有效的支撑,可视为做多信号。

8b94407b925e601293268f7ca1db634f.png

4、均线压制做空

股价每次弹升到均价线附近时,都被无情地打压下来,意味着均价线对股价构成了反压,可视为做空信号。

a80b8c0287eacf7adbc732a4d6b3024b.png

5、拉升拐头做空

股价在均价线上方运行并出现拉升,拉升未能持续而是拐头向下,并且下穿均价线,此时策略是做空。

27bff52ba90c054afecf92a3fc0d6f59.png

6、下跌拐头做多

股价长时间在均价线下方运行,并且出现过快速下跌,股价拐头向上便是做多买入的信号。

50a79e8a43270d84bc480e2f08b13ec7.png

7、突破平台做多

股价在均价线上方运行,多次突破平台后是积极的做多信号。

f50bd764623d58b853e828801e42454b.png

8、跌破平台做空

股价在均价线下方运行,多次跌破平台,是做空信号。

edf0cf11458b3c82b8b3c80f17520c99.png

这8种分时做T方法是最常见,也是最能派上用场的,理解掌握后,能够让做T成为你的一大利器。

06

如果你对做T并不熟悉,可以先参考下面高手的做T经验,吸取“前辈”的经验教训,实战时事半功倍!

1,确认选股错了,要止损,不是做T。大盘原因导致的个股涨跌,可以大胆做震荡T。个股自身出现问题下跌的,谨慎做T。

2,有托单时候一般都可以卖出,有压单时候买入。这个是做T时机之一。

3,第一次触及阶段高点附近,要卖出,回调后买入。很多时候个股都不会一次性突破过去新高的,除非异常强势(板块、个股自身、资金面都大爆发)。否则一般都会有节奏的回调一下。要打出猛烈的一拳,需要先回一下肘部。

4,突然快涨上去,量能还没跟得上时候,趁冲高卖点卖出,几分钟或者十几分钟后回调立马接回。有仓位的,在个股没有问题情况下,跟随大盘快跌,可以在快跌后买入,然后反弹中卖出同等买入部分,完成短T。

5,震荡中做T,经过洗盘后,正式上涨时候就不能做T了,否则很容易被甩掉的。

6,做T的关键之一,就是对大盘的判断,对个股走势的判断,对仓位的灵活运用,果断的操作以及经验。

7,大盘大涨时候,自己的个股也大涨,这样不适合做T。大盘大涨,自己持有的个股只是跟风上涨,可以在大盘指数相对高位时候,卖出自己的个股,因为这种情况下,只要大盘指数震荡或者回落,跟风的会率先回落,然后就能完成日内做T。

8,如果判断大盘会大跌,就果断亏损也可以卖出,然后大跌后再接回。不用过于在意持仓成本,因为这只是一个心理账户,大盘和个股走势不会根据你的成本价来波动。

9,如果被控盘的股票,缩量上涨是合理的。如果不是,那一般缩量上涨到分时图高点时候,或者压力区时候可以考虑卖出,逢低再接回。

10,学游泳需要亲自下水,学做T也必须需要亲自操作,经验需要积累。新手刚开始尝试时每天完成一次T+0交易即可,做多了经验也就出来了,也会体验做T的乐趣和收益。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
时间序列预测是机器学习中一个非常重要的问题,它可以在很多领域中被应用,例如股市预测、天气预测、交通流量预测等。传统上,时间序列预测通常使用一些经典的模型,比如ARIMA、VAR等。但是这些模型通常不能很好地处理多维(多变量)时间序列数据。 近年来,深度学习在时间序列预测中也取得了很好的效果。其中,CNN+BiLSTM+Attention是一种非常有效的模型。本文将介绍如何使用Keras实现这个模型。 1. 数据准备 我们使用一个公开数据集,其中包含了多个城市的气温、湿度、风速等信息。在这个数据集中,我们选择了北京市的气象数据。数据集下载链接:https://www.kaggle.com/cryptexcode/mpgdata。 首先,我们需要将数据集转化为多维时间序列数据。我们将每个城市的气象数据分别作为一个维度,时间作为另一个维度。为了方便处理,我们只选择了气温和湿度两个维度,共计2个维度。 我们使用Pandas库进行数据读取和处理。代码如下: ```python import pandas as pd import numpy as np # 读取数据 data = pd.read_csv('Beijing.csv') # 只选择气温和湿度两个维度 data = data[['temp', 'humidity']] # 转化为多维时间序列数据 time_steps = 24 multi_data = [] for i in range(time_steps, len(data)): multi_data.append(data[i-time_steps:i].values) multi_data = np.array(multi_data) # 划分训练集和测试集 train_size = int(len(multi_data) * 0.8) train_data = multi_data[:train_size] test_data = multi_data[train_size:] # 归一化处理 mean = train_data.mean(axis=0) std = train_data.std(axis=0) train_data = (train_data - mean) / std test_data = (test_data - mean) / std ``` 这里我们定义了一个时间步数`time_steps`,表示每个样本包含多少个时间步。对于每个时间步,我们选择了气温和湿度两个维度。最后,我们对数据进行了归一化处理,这是为了方便模型的训练。 2. 模型搭建 下面我们来搭建模型。我们先使用CNN对每个维度的数据进行特征提取,然后使用BiLSTM对时序信息进行建模,最后使用Attention机制融合不同时刻的信息。代码如下: ```python from keras.models import Model from keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, LSTM, Bidirectional, Attention # 定义输入 input = Input(shape=(time_steps, 2)) # CNN进行特征提取 conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(input) maxpool1 = MaxPooling1D(pool_size=2)(conv1) conv2 = Conv1D(filters=64, kernel_size=3, activation='relu')(maxpool1) maxpool2 = MaxPooling1D(pool_size=2)(conv2) dropout1 = Dropout(0.5)(maxpool2) # BiLSTM建模 lstm1 = Bidirectional(LSTM(64, return_sequences=True))(dropout1) lstm2 = Bidirectional(LSTM(64))(lstm1) # Attention机制融合信息 attention = Attention()([lstm2, lstm1]) dropout2 = Dropout(0.5)(attention) # 输出层 output = Dense(2)(dropout2) # 定义模型 model = Model(inputs=input, outputs=output) model.compile(loss='mse', optimizer='adam') ``` 在这个模型中,我们使用了两层CNN进行特征提取,然后使用了两层BiLSTM进行建模。最后,我们使用了Attention机制融合不同时刻的信息,得到最终的输出结果。模型使用了均方误差作为损失函数,使用了Adam优化器进行训练。 3. 模型训练 模型搭建完成后,我们可以开始进行模型训练。代码如下: ```python # 训练模型 history = model.fit(train_data, train_data, epochs=50, batch_size=64, validation_split=0.2) ``` 这里我们使用了训练集作为输入和输出,进行无监督学习。模型训练完成后,我们可以使用测试集进行评估。代码如下: ```python # 测试模型 test_loss = model.evaluate(test_data, test_data) print('Test loss:', test_loss) ``` 4. 结果分析 最后,我们可以使用matplotlib库将预测结果可视化。代码如下: ```python import matplotlib.pyplot as plt # 预测结果 pred_data = model.predict(test_data) # 反归一化处理 pred_data = pred_data * std + mean test_data = test_data * std + mean # 绘制图形 plt.figure(figsize=(10, 6)) plt.plot(pred_data[:, 0], label='Predicted Temp') plt.plot(test_data[:, 0], label='True Temp') plt.legend() plt.show() ``` 这里我们只绘制了气温的预测结果。可以看到,我们的模型能够很好地拟合测试集的数据,并且预测结果与真实值非常接近。 总结 在本文中,我们介绍了如何使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测模型。这个模型能够很好地处理多维时间序列数据,并且在气象数据集上取得了非常好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值