java lambda 二叉树_剑指offer:平衡二叉树(示例代码)

题意描述

输入一棵二叉树,判断该二叉树是否是平衡二叉树。

在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树

解题思路

一、递归

从上向下遍历,求出每个节点的左右子树的深度

根据左右子树的深度差判断是否为AVL树

public class Solution {

public boolean IsBalanced_Solution(TreeNode root) {

if(root == null) return true;//空树,是AVL树

int left = TreeDepth(root.left);//左孩子深度

int right = TreeDepth(root.right);//右孩子深度

if(Math.abs(left-right) <= 1){//左右子树深度差《=1

//判断以左右孩子为根节点的树是否为AVL树

return IsBalanced_Solution(root.left) && IsBalanced_Solution(root.right);

}

return false;

}

private int TreeDepth(TreeNode root){

if(root == null) return 0;

int left = TreeDeath(root.left);

int right = TreeDeath(root.right);

return Math.max(left,right)+1;

}

}

从上向下遍历会重复遍历下层节点,增加不必要的开销。

我们可以从下向上遍历,如果子树是平衡二叉树,则返回子树深度;如果不是平衡树,直接返回false

public class Solution {

public boolean IsBalanced_Solution(TreeNode root) {

if(root == null) return true;

return TreeDepth(root) != -1;

}

private int TreeDepth(TreeNode root){

if(root == null) return 0;

int left = TreeDepth(root.left);

if(left == -1) return -1;

int right = TreeDepth(root.right);

if(right == -1) return -1;

return Math.abs(left-right)>1 ? -1 : 1+Math.max(left,right);

}

}

二、非递归

使用非递归计算每个节点左右子树的深度,根据深度差判断是否是平衡二叉树。

import java.util.*;

public class Solution {

public boolean IsBalanced_Solution(TreeNode root) {

if(root == null) return true;

int left = depth(root.left);

int right = depth(root.right);

if(Math.abs(left-right) <= 1){

return IsBalanced_Solution(root.left) && IsBalanced_Solution(root.right);

}

return false;

}

private int depth(TreeNode root){

if(root == null) return 0;

Queue queue = new LinkedList<>();

queue.add(root);

int depth = 0;

int size = 0;

while(!queue.isEmpty()){

depth ++;

size = queue.size();

while(size > 0){

root = queue.poll();

if(root.left != null) queue.add(root.left);

if(root.right != null) queue.add(root.right);

size --;

}

}

return depth;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值