昨天微积分考试,老师出了一道比较有趣的题.题目是求三个无穷级数的值,比较有意思,在此回忆并且分享一下
1)求级数
2)求级数
3)求级数
(1)
第一问很容易,就是一个首项为1,公比为
的等比数列,可以直接用公式
求得.其中
是首项,
是公比,
为数列和.
第二问和第三问是在第一问基础上的延伸.
(2)
构造函数
,当
时,该函数的幂级数展开等于数列(1). 即:
对两边同时求导,
两边同时乘上
得:
此时我们的函数是
,
而
故第二问解答完毕.
(3)
由上可知:
注意上上式在n=0时仍然成立,因为我们将函数从x=0处展开.
再次对两边同时求导:
所以
所以此时
因为
,所以此时求和下限又要变回0.即