MATLAB中自定义AWGN生成函数的实现与应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:AWGN是通信系统仿真中模拟噪声的重要方法。标题中的“awgn.zip_Function awgn_matlab”可能是一个提供在MATLAB 2012a环境下生成AWGN信号的压缩包。在早期版本的MATLAB中,高斯噪声函数可能未内置,因此这个压缩包含有自定义的AWGN生成函数。本文将探讨如何在MATLAB中生成AWGN,包括自定义函数的实现以及如何利用现有的Signal Processing Toolbox中的 awgn 函数。 awgn

1. AWGN的定义与特性

1.1 AWGN的定义

AWGN(Additive White Gaussian Noise,加性白高斯噪声)是通信系统中常见的一种随机噪声,它的功率谱密度在整个频率范围内都是常数,即白噪声特性。在信号处理和通信系统设计中,AWGN是一个基本的理论模型,被用来模拟现实世界中遇到的随机电磁干扰。

1.2 AWGN的数学模型

AWGN的数学模型可以表示为: [n(t) = \mathcal{N}(0, \sigma^2)] 其中,(n(t))是噪声信号,(\mathcal{N})表示高斯分布,(0)是均值(无偏),(\sigma^2)是方差,代表噪声功率。这个模型表明AWGN是一种均值为零,方差为(\sigma^2)的正态分布随机过程。

1.3 AWGN的特性

AWGN的主要特性包括: - 无记忆性 :噪声的当前值不依赖于历史值。 - 功率谱密度恒定 :在整个频率范围内保持恒定,意味着所有频率成分的功率相等。 - 高斯分布 :噪声值服从均值为零的高斯分布,具有对称的钟形概率密度函数。

了解这些特性对于正确模拟和分析通信系统中的信号至关重要,因为它们直接影响信号的传输质量和系统的整体性能评估。

2. 在MATLAB中自定义AWGN函数的步骤

2.1 理解AWGN的基础知识

在数字通信系统中,AWGN(Additive White Gaussian Noise)是一种理想化的噪声模型,它假设信号受到的噪声是加性的、白色的、高斯分布的,并且是均匀分布在整个频带上的。AWGN模型常用于模拟信道中的随机干扰,对于评估和优化通信系统性能至关重要。

2.1.1 确定函数输入参数

在MATLAB中自定义AWGN函数时,首先需要明确函数的输入参数。通常情况下,这些参数包括信号的输入数据、信噪比(SNR)、信号样本率等。信噪比通常以分贝(dB)为单位。例如,对于一个二进制调制系统,输入参数可能如下:

function noisy_signal = awgn(input_signal, snr, Fs)

这里 input_signal 是输入信号, snr 是目标信噪比(以分贝为单位),而 Fs 是采样频率。

2.1.2 设计函数的输出结果

函数的输出结果是加入AWGN后的信号,通常和输入信号具有相同的数据类型和长度。输出信号 noisy_signal 将被用来模拟信道中的噪声影响。函数输出的示例代码如下:

noisy_signal = input_signal + noise; % noise 是加入到信号中的高斯白噪声

2.2 编写AWGN模拟函数的伪代码

2.2.1 代码逻辑的描述

在编写AWGN函数的MATLAB代码之前,我们可以先用伪代码描述其逻辑流程。伪代码有助于理解整个函数的工作原理,并在实际编码之前检查逻辑的正确性。

函数 awgn(input_signal, snr, Fs)
    1. 根据 snr 和 Fs 计算噪声的方差
    2. 生成高斯白噪声
    3. 调整噪声水平以匹配目标SNR
    4. 将噪声添加到输入信号中
    5. 返回带有AWGN的信号
结束函数
2.2.2 确定函数的主框架

确定函数的主框架涉及编写MATLAB代码的基础结构,并在其中填入适当的逻辑。基础结构可以是:

function noisy_signal = awgn(input_signal, snr, Fs)
    % 计算噪声功率
    noise_power = ... % 根据snr和Fs计算噪声功率
    % 生成高斯白噪声
    noise = ... % 使用MATLAB内置函数生成噪声
    % 调整噪声
    noise = ... % 调整噪声以匹配目标SNR
    % 合成带噪声信号
    noisy_signal = ... % 将噪声加入信号中
end

2.3 实现AWGN模拟函数的MATLAB代码

2.3.1 编写信号处理代码

信号处理的核心是正确计算和调整噪声水平以匹配目标SNR。这一步骤需要理解信噪比的计算方法以及如何根据SNR确定噪声的功率。

function noisy_signal = awgn(input_signal, snr, Fs)
    % 计算信号功率
    signal_power = sum(input_signal.^2) / length(input_signal);
    % 将SNR从分贝转换为线性比例
    snr_linear = 10^(snr/10);
    % 计算噪声功率
    noise_power = signal_power / snr_linear;
    % 生成高斯白噪声
    noise = randn(size(input_signal)) * sqrt(noise_power);
    % 合成带噪声信号
    noisy_signal = input_signal + noise;
end
2.3.2 高斯白噪声的生成和添加

高斯白噪声是通过MATLAB内置函数 randn 生成的。该函数会生成符合标准正态分布(均值为0,方差为1)的随机数序列,然后通过乘以噪声功率的平方根来调整噪声的水平。

awgn 函数最终版本的代码如下:

function noisy_signal = awgn(input_signal, snr, Fs)
    % 计算信号功率
    signal_power = sum(input_signal.^2) / length(input_signal);
    % 将SNR从分贝转换为线性比例
    snr_linear = 10^(snr/10);
    % 计算噪声功率
    noise_power = signal_power / snr_linear;
    % 生成高斯白噪声
    noise = randn(size(input_signal)) * sqrt(noise_power);
    % 合成带噪声信号
    noisy_signal = input_signal + noise;
end

在此代码块中,我们首先计算输入信号的功率,然后根据目标SNR计算出噪声的功率。最后,我们生成一个与输入信号同样大小的高斯白噪声,并将其加入信号中以模拟信道中的噪声影响。

通过上述分析和代码编写的步骤,我们已经完成了在MATLAB中自定义AWGN函数的基础部分。在后续的章节中,我们将进一步讨论如何在不同版本的MATLAB中使用AWGN函数,以及AWGN函数在通信系统仿真中的具体应用。

3. MATLAB 2012a版本可能缺少的内置AWGN函数

在信号处理和通信系统仿真中,添加适当级别的高斯白噪声(AWGN)是一个常见的需求。然而,在某些旧版本的MATLAB中,比如MATLAB 2012a,内置的AWGN函数可能由于各种原因不可用。本章节将重点介绍如何在这些版本中检查和应对AWGN函数的缺失。

3.1 检查和确认版本中的函数缺失

3.1.1 查询官方文档

首先,我们需要确认MATLAB版本是否确实缺少内置的AWGN函数。这可以通过查询官方的MATLAB文档或使用内置的帮助系统来完成。

在MATLAB命令窗口中输入以下命令,可以帮助我们确定是否安装了Signal Processing Toolbox:

ver

该命令会列出所有已安装的工具箱。如果Signal Processing Toolbox不在列表中,那么内置的AWGN函数将不可用。接下来,我们可以使用以下命令来查询AWGN函数:

help awgn

如果MATLAB反馈“未找到函数或命令”,则表明当前的MATLAB安装中确实不包含AWGN函数。在MATLAB 2012a的发行版中,Signal Processing Toolbox并不包含AWGN函数。

3.1.2 用户社区的经验分享

在官方资源没有解决方案的情况下,用户社区是一个宝贵的信息来源。在MATLAB的论坛、Stack Overflow或是MathWorks Answers中搜索相关问题,我们可以找到其他用户遇到相同问题的解决方案。

搜索关键词如:“MATLAB 2012a 缺少AWGN函数”可以导向到一些经验分享,比如安装旧版本的Signal Processing Toolbox,使用第三方的AWGN模拟函数,或者自己编写AWGN函数。

3.2 解决内置AWGN函数缺失的方法

当确认MATLAB 2012a缺少内置的AWGN函数后,我们需要寻找替代方案。有两种主要的解决方法:

3.2.1 安装和配置Signal Processing Toolbox

虽然MATLAB 2012a的发行版中可能不包含AWGN函数,但通过安装旧版本的Signal Processing Toolbox,我们可能能够解决这个问题。以下是安装流程:

  1. 访问MathWorks官方下载中心。
  2. 选择与你的MATLAB版本兼容的Signal Processing Toolbox版本。
  3. 下载并安装该工具箱。
  4. 重启MATLAB并再次尝试调用AWGN函数。

需要注意的是,这种方法可能受到MATLAB许可协议的限制,并且不一定总是可行。

3.2.2 查找第三方AWGN模拟函数

如果不能安装Signal Processing Toolbox,那么寻找和使用第三方提供的AWGN模拟函数便是一个可行的替代方案。互联网上有许多开源的AWGN模拟器,包括但不限于MathWorks的File Exchange平台。

以下是使用第三方AWGN模拟函数的一般步骤:

  1. 访问MathWorks File Exchange或其他源代码托管平台。
  2. 搜索可用的AWGN模拟函数并下载。
  3. 将下载的文件添加到MATLAB的路径中。
  4. 在代码中引用新添加的AWGN模拟函数。

注意,使用第三方软件时,要确保来源可靠且代码符合许可协议。

在接下来的章节中,我们将详细介绍如何自己实现一个AWGN模拟函数,这为没有可用内置函数或第三方工具的用户提供了一个可行的解决方案。

4. 自定义AWGN函数 awgn.m wgn.m 的可能作用

详细解读 awgn.m 函数的功能

参数传递和错误处理

awgn.m 函数在设计时考虑了与MATLAB内置函数的兼容性。参数传递遵循标准的AWGN添加函数接口,其中主要包括信号输入、信噪比(Signal-to-Noise Ratio, SNR)和噪声功率谱密度(Noise Power Spectral Density, NPSD)等参数。

  • 信号输入 :通常是需要添加噪声的信号矩阵或向量。
  • SNR :以分贝(dB)为单位指定信号与噪声的比率。
  • NPSD :为每单位带宽的噪声功率。此参数是可选的,如果未指定,则函数会根据SNR计算出相应的NPSD值。

参数的有效性检验是函数设计的一部分,如果输入参数有误,函数应该返回相应的错误信息,以提示用户纠正。例如,如果SNR参数为负值或者非数字类型,函数内部需要通过 assert 语句或者抛出异常来处理这种情况。

噪声水平的计算

噪声水平的计算是 awgn.m 函数的核心部分之一,决定着最终加入到信号中的噪声功率大小。此计算会基于输入参数和信号的特性来确定。

  • SNR到NPSD的转换 :首先,需要将SNR转换为线性尺度,然后根据信号的采样频率和信号长度,将其转换为NPSD值。
  • 噪声的生成 :根据计算出的NPSD值,生成高斯白噪声。这通常通过 randn 函数来实现,它会生成均值为0,标准差为1的高斯分布随机数。
  • 噪声的添加 :最后,将生成的噪声添加到信号中,确保噪声功率与NPSD值相对应。函数中会有一个比例因子,确保加入的噪声能量与期望的SNR一致。

代码示例如下:

function noise = generate_noise(signal, snr, npsd)
    % 假设信号是单通道的,np sd是可选的
    if nargin < 3 || isempty(npsd)
        % 将SNR转换为线性尺度并计算NPSD
        npsd = 10^((snr-10)/10) / (prod(size(signal)));
    end
    % 计算噪声的标准差
    sigma = sqrt(npsd);
    % 生成高斯噪声
    noise = sigma * randn(size(signal));
end

在上述代码中, generate_noise 函数负责计算噪声水平并生成相应的噪声。该函数内部首先检查是否提供了NPSD值,如果没有则根据SNR计算NPSD值。之后,通过信号长度和采样频率计算出噪声的标准差,并生成所需的高斯噪声。

探讨 wgn.m 函数的应用场景

生成特定信噪比(SNR)的噪声信号

wgn.m 函数是专门用于生成具有特定信噪比(SNR)的高斯白噪声信号。这种类型的函数在通信系统模拟、信号处理算法测试以及信号与系统的性能评估中非常有用。

  • 应用场景 :例如,在数字通信系统模拟中,需要在基带信号中添加特定功率的噪声,以便模拟信道传播时的信号衰落和干扰。 wgn.m 提供了直接生成这种噪声信号的手段。
  • 参数设置 :该函数需要指定噪声信号的长度、带宽、采样频率等参数,以确保生成的噪声信号与真实信道环境相似。
% 示例:生成一个长度为1000点、带宽为1Hz、采样频率为100Hz、SNR为20dB的高斯白噪声信号
noise_signal = wgn(1000, 1, 20, 'measured');

信号质量的评估

高斯白噪声信号在信号质量评估中同样扮演着重要角色。 wgn.m 函数生成的噪声可以被加入到一个已知质量的信号中,然后通过信号质量评估指标来检测信号处理算法的性能。

  • 评估指标 :常见的信号质量评估指标包括误码率(Bit Error Rate, BER)、信号干扰比(Signal-to-Interference Ratio, SIR)、信噪比(SNR)等。通过在信号中加入不同水平的噪声,可以观察这些指标的变化,以此评估不同算法在不同信噪比条件下的性能表现。
  • 实际应用 :在实际应用中, wgn.m 函数生成的噪声可以用于模拟真实的通信信道,通过信道编码和解码的性能评估,来选择适合的通信方案和算法。

综上所述, awgn.m wgn.m 函数在信号处理和通信系统仿真中具有重要作用,它们提供了灵活的接口和丰富的应用场景,能够满足复杂环境下的模拟需求。

5. 使用Signal Processing Toolbox中的 awgn 函数添加AWGN

5.1 学习Signal Processing Toolbox中 awgn 函数的使用方法

5.1.1 函数的参数设置

MATLAB的Signal Processing Toolbox提供了一个非常方便的函数 awgn ,它可以在信号中添加不同信噪比(SNR)的高斯白噪声。使用此函数时,可以通过一系列参数来控制添加噪声的过程。

y = awgn(x,snr,signalpower,complexflag');
  • x :输入信号,可以是实数或复数。
  • snr :信噪比,以分贝(dB)为单位。
  • signalpower :可选参数,信号的功率,默认值是1。
  • complexflag :可选参数,控制输出信号的类型,'measured'表示输出信号的功率会被测量并返回;'scaled'表示添加噪声后的信号功率会被缩放至 signalpower ;'dB'表示信号功率将根据分贝值缩放。

5.1.2 函数的性能和效果

awgn 函数在添加噪声时非常高效,它能够快速地模拟出不同的通信环境,从而帮助设计者测试和评估通信系统的性能。例如,如果想要测试一个通信系统在20dB的信噪比环境下的表现,可以直接将 snr 参数设置为20。

original_signal = randn(1024,1); % 生成一个随机信号
noisy_signal = awgn(original_signal, 20);

此代码首先创建了一个1024点的随机信号,然后在20dB信噪比条件下添加了高斯白噪声,得到了 noisy_signal

5.2 理解 awgn 函数背后的数学原理

5.2.1 信号与噪声功率的计算

awgn 函数的核心是模拟信号通过一个信噪比已知的加性高斯白噪声通道。为了实现这一模拟,函数需要计算信号功率和噪声功率,进而根据信噪比计算出需要添加的噪声量。

信号功率 P_signal 可以通过以下公式计算:

P_signal = sum(x.^2) / length(x);

其中 x 是输入信号, P_signal 是信号功率。

噪声功率 P_noise 则与信噪比 snr 相关:

P_noise = P_signal / (10^(snr/10));

5.2.2 信噪比(SNR)的计算公式

信噪比定义为信号功率与噪声功率的比值,通常以分贝为单位表示。在 awgn 函数中,可以使用以下公式来计算信噪比:

snr_linear = P_signal / P_noise;
snr_dB = 10 * log10(snr_linear);

通过这个信噪比,我们可以设置 awgn 函数的 snr 参数,来模拟出特定信噪比下的噪声环境。

信号功率和噪声功率是通信系统设计和性能评估中的关键参数,理解这些概念可以帮助设计者更好地分析和解释仿真结果。

% 示例代码:计算一个信号的信噪比
P_signal = sum(original_signal.^2) / length(original_signal);
P_noise = P_signal / (10^(20/10)); % 假设为20dB
snr_linear = P_signal / P_noise;
snr_dB = 10 * log10(snr_linear);

以上代码块展示了如何手动计算一个信号的信噪比,以及 awgn 函数如何使用这个信噪比来添加高斯白噪声。这些计算对于验证 awgn 函数的正确性以及深入理解其工作原理都非常有用。

6. 如何计算信号功率和噪声功率

在通信系统中,信号功率和噪声功率的准确计算是衡量系统性能的关键。它们不仅影响信噪比(SNR),还直接关系到数据传输的可靠性和质量。本章节将详细介绍信号功率和噪声功率的计算方法,并探讨实际应用中的测量和估算技巧。

6.1 分析信号功率的计算方法

6.1.1 离散信号的功率计算

在数字通信系统中,信号通常以离散的形式处理。离散信号的功率可以通过计算信号样本值的平方的均值来获得。假设有一组离散时间信号样本 ( x[n] ),( n = 0, 1, ..., N-1 ),则信号的平均功率 ( P ) 可以通过以下公式计算:

[ P = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 ]

这里,( |x[n]|^2 ) 表示信号样本的平方,代表信号的能量。求和操作后除以样本数量 ( N ),得到平均功率值。

6.1.2 连续信号的功率估计

对于连续信号,计算功率稍微复杂一些,通常需要借助积分来估计。如果信号 ( x(t) ) 是连续的,其功率 ( P ) 由下面的积分公式给出:

[ P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt ]

在实际应用中,由于我们无法计算无穷长时间的积分,通常会在一个有限的时间窗口内进行近似估计。

代码示例:离散信号功率计算
% 假设x为离散信号数组
x = randn(1, 1000);  % 示例信号,这里用随机数生成

% 计算信号的平均功率
signal_power = sum(abs(x).^2) / length(x);

% 输出计算结果
disp(['信号的平均功率为:', num2str(signal_power)]);
参数说明和逻辑分析
  • randn(1, 1000) :生成一个1行1000列的数组,其值为标准正态分布的随机数。
  • abs(x).^2 :计算数组 x 中每个元素的平方。
  • sum(abs(x).^2) / length(x) :求平方后元素的和,并除以元素总数,得到平均功率。

6.2 探索噪声功率的计算技术

6.2.1 高斯白噪声功率的特性

高斯白噪声是一种理想化的噪声模型,其功率谱密度在整个频率范围内是平坦的,且该噪声的幅度服从高斯分布。由于其特性,高斯白噪声的总功率与噪声样本的方差成正比。设高斯白噪声样本 ( w[n] ),则噪声的功率 ( P_w ) 可表示为:

[ P_w = \sigma_w^2 ]

其中,( \sigma_w^2 ) 是噪声样本的方差,代表噪声的平均功率水平。

6.2.2 实际应用中噪声功率的测量和估算

在实际通信系统中,噪声功率可以通过多种方法测量或估算。最常见的是使用训练序列或已知信号的接收信号来估计噪声功率。例如,可以发送一个已知的信号,并接收其被噪声污染的版本,然后根据已知信号和接收信号的差异来估计噪声功率。

代码示例:高斯白噪声功率测量
% 生成高斯白噪声信号
noise = 0.5 * randn(1, 1000);  % 假设噪声标准差为0.5

% 计算噪声的功率
noise_power = var(noise);

% 输出计算结果
disp(['高斯白噪声的功率为:', num2str(noise_power)]);
参数说明和逻辑分析
  • randn(1, 1000) :生成标准正态分布的随机噪声样本。
  • var(noise) :计算噪声样本的方差,根据前面讨论的,方差即为噪声的功率。

结论

信号功率和噪声功率的计算对于通信系统的性能分析至关重要。本章介绍了离散信号和连续信号的功率计算方法,并探讨了高斯白噪声功率的理论计算以及实际测量技术。掌握这些技术可以帮助工程师在设计和优化通信系统时做出更加精确的决策。

7. AWGN在通信系统仿真中的应用

7.1 模拟AWGN在数字通信系统中的角色

在数字通信系统中,模拟添加高斯白噪声(AWGN)是至关重要的一步,用于模拟真实世界中的无线通信环境,确保设计的系统能够有效应对随机噪声的干扰。

7.1.1 信道噪声模型的建立

为了创建一个准确的信道噪声模型,我们必须考虑信号传输过程中可能遇到的各种因素,如路径损耗、多径效应、干扰等。在这些因素中,AWGN是其中最简单的模型,它假设噪声是在一个宽广的频带上均匀分布的高斯噪声。

% MATLAB代码示例:生成AWGN信道模型
SNR_dB = 20; % 信噪比,以分贝为单位
N = 10^6; % 信号长度
txSignal = randn(N, 1) + 1i*randn(N, 1); % 生成随机信号
rxSignal = txSignal + 1/sqrt(2)*randn(N, 1) + 1i*1/sqrt(2)*randn(N, 1); % 添加AWGN

7.1.2 通信链路的性能评估

通信链路的性能通常通过误码率(BER)来衡量。为了计算BER,我们需要在已知发送信号和接收信号的情况下,分析差错的数量。

% 计算误码率(BER)
countErrors = 0;
for i = 1:N
    if real(txSignal(i)) ~= real(rxSignal(i)) || imag(txSignal(i)) ~= imag(rxSignal(i))
        countErrors = countErrors + 1;
    end
end
BER = countErrors / N;
disp(['BER = ', num2str(BER)]);

7.2 探讨AWGN模拟对系统设计的影响

在系统设计阶段,AWGN模型用于测试各种信号处理算法,如调制解调、信道编码、接收机设计等。

7.2.1 信号处理算法的测试

为了评估信号处理算法在噪声环境下的表现,工程师可以在算法输入端添加不同功率水平的AWGN,然后检查算法输出端的性能。

% 测试信号处理算法
processedSignal = algorithmFunction(rxSignal); % 处理接收信号
% 算法函数需要根据实际算法进行定义
% 比如某种特定的解调、解码算法等

7.2.2 系统优化和调试策略

通过不断调整算法参数并观察AWGN环境下系统的性能变化,工程师可以优化算法性能,例如调整滤波器参数、编码/解码速率等。

7.3 分析AWGN仿真结果的解读与应用

AWGN仿真结果的分析是通信系统设计和优化过程中的关键部分,这关系到系统性能的提升和潜在问题的识别。

7.3.1 仿真数据的可视化

可视化仿真数据有助于工程师直观地理解系统性能,例如通过绘制BER与信噪比(SNR)的关系曲线。

% 绘制BER与SNR的关系曲线
SNR_dB = 0:5:30; % 信噪比范围
BERs = zeros(length(SNR_dB), 1); % 初始化BER数组

for i = 1:length(SNR_dB)
    % 重复上述添加AWGN并计算BER的过程,存储每一种SNR下的BER
    % ...
    BERs(i) = calculatedBER;
end

semilogy(SNR_dB, BERs, 'b.-'); % 绘制BER曲线
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR for Communication System');

7.3.2 仿真与理论结果的对比分析

将仿真结果与理论分析结果进行比较,可以验证仿真环境设置的正确性,同时有助于发现和纠正实际系统设计中的潜在问题。

在本章中,我们深入探讨了AWGN在通信系统仿真中的应用,从建立信道噪声模型到系统设计的测试与优化,再到仿真结果的分析与应用。这些环节对于验证和改进通信系统的性能至关重要。在实际操作中,正确运用AWGN模拟和分析可以显著提升通信系统的健壮性和可靠性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:AWGN是通信系统仿真中模拟噪声的重要方法。标题中的“awgn.zip_Function awgn_matlab”可能是一个提供在MATLAB 2012a环境下生成AWGN信号的压缩包。在早期版本的MATLAB中,高斯噪声函数可能未内置,因此这个压缩包含有自定义的AWGN生成函数。本文将探讨如何在MATLAB中生成AWGN,包括自定义函数的实现以及如何利用现有的Signal Processing Toolbox中的 awgn 函数。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值