代码随想录刷题第29天|LeetCode491递增子序列、LeetCode46全排列、LeetCode47全排列II

文章介绍了LeetCode上的两个经典问题——递增子序列和全排列,以及它们的变种全排列II。解决方案均采用回溯算法,重点在于处理递增条件、去重和路径恢复。对于递增子序列,避免了排序并处理了重复元素;全排列问题则考虑了元素使用状态;全排列II则需要去除重复的排列组合。
摘要由CSDN通过智能技术生成

1、LeetCode491递增子序列

题目链接:491、递增子序列

本题不能排序,{4,7,6,7}的递增子序列没有{4,6,7,7},排序后会有{4,6,7,7}.

{4,7,3,7}的递增子序列没有{3,4},所以startIndex从i+1开始。

首先,当path数组中元素个数大于2时,才将path加入到result中。

每次循环时,判断要添加的元素nums[i]如果小于path.back(),continue;

或者unordered_set<int> uset里如果有该元素存在,说明在同一树层,也要continue。

如果是同一树枝的话,每次递归uset都会清空。

如果符合添加的条件,uset.insert(nums[i]);path.push_back(nums[i]);

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtraking(vector<int>& nums, int startIndex)
    {
        if (path.size() > 1) result.push_back(path);

        unordered_set<int> uset;
        for (int i = startIndex; i < nums.size(); i++)
        {
            if ( (!path.empty() && nums[i] < path.back()) || uset.find(nums[i]) != uset.end())
            {
                continue;
            }
            uset.insert(nums[i]);
            path.push_back(nums[i]);
            backtraking(nums, i + 1);
            path.pop_back();

        }
    }

    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtraking(nums, 0);
        return result;
    }
};

2、LeetCode46 全排列

题目链接:46、全排列

if (used[i] = true) 说明该元素使用过,在回溯时,令used[i] = false;

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, vector<bool>& used)
    {
        if (path.size() == nums.size())
        {
            result.push_back(path);
        }

        for (int i = 0; i < nums.size(); i++)
        {
            if (used[i] == true)
            {
                continue;
            }

            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            used[i] = false;
            path.pop_back();
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums,used);
        return result;
    }
};

3、LeetCode47全排列II

题目链接:47、全排列II

本题不能重复,要考虑去重。

如果 (i > 0 && nuns[i] == nums[i-1] && used[i-1] == false),说明当前元素重复,而且是在树层上重复,因为已经发生了回溯,used[i-1] == false;  continue;

如果 used[i] == true,说明当前元素已经取过了,也要continue。

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, vector<bool>& used)
    {
        if (path.size() == nums.size())
        {
            result.push_back(path);
        }

        for (int i = 0; i < nums.size(); i++)
        {
            if ( (i > 0 && nums[i] == nums[i-1] && used[i-1] == false) || used[i] == true)
            {
                continue;
            }

            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
        
    }

    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end());
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值